Scientific Publications

Alvial, I.E., Vargas, H.A., Marinov, M., Esquivel, C., Araya, J., Araya-Donoso, R., Vila, I., Veliz, D., 2019. Isolation on a remote island: genetic and morphological differentiation of a cosmopolitan odonate. Heredity. (Edinb. ) 122, 893-905.
Abstract: Although low levels of genetic structure are expected in highly widespread species, geographical and/or ecological factors can limit species distributions and promote population structure and morphological differentiation. In order to determine the effects of geographical isolation on population genetic structure and wing morphology, 281 individuals of the cosmopolitan odonate Pantala flavescens were collected from four continental (Central and South America) and five insular sites (Polynesian islands and the Maldives). COI sequences and eight microsatellite loci were used to characterize genetic diversity and genetic structure between and within locations. Linear and geometric morphometry were used to evaluate differences in the size and shape of wings. Genetic analysis showed a global genetic difference between the continental and insular sites. American locations did not show genetic structure, even in locations separated by a distance of 5000 km. Easter Island showed the lowest values of genetic diversity (mainly mitochondrial diversity) and the highest values of genetic differences compared to other insular and continental sites. Individuals from Easter Island showed smaller forewings, a different abdomen length to thorax length ratio, and a different configuration of anal loop in the hindwings. Thus, the greater isolation, smaller area, and young geological age seem to have determined the genetic and morphological differences in P. flavescens of Easter Island, where selection could promote a loss of migratory behavior and may improve other life history traits, such as reproduction. This work provides new insight into how microevolutionary processes operate in isolated populations of cosmopolitan species

Amer, N. R., Stoks, R., Antol, A., & Sniegula, S. (2024). Microgeographic differentiation in thermal and antipredator responses and their carry-over effects across life stages in a damselfly. PLoS. One. 19, e0295707, doi:PONE-D-23-24816 [pii];10.1371/journal.pone.0295707 [doi].
Abstract: Global warming and invasive species, separately or combined, can impose a large impact on the condition of native species. However, we know relatively little about how these two factors, individually and in combination, shape phenotypes in ectotherms across life stages and how this can differ between populations. We investigated the non-consumptive predator effects (NCEs) imposed by native (perch) and invasive (signal crayfish) predators experienced only during the egg stage or during both the egg and larval stages in combination with warming on adult life history traits of the damselfly Ischnura elegans. To explore microgeographic differentiation, we compared two nearby populations differing in thermal conditions and predator history. In the absence of predator cues, warming positively affected damselfly survival, possibly because the warmer temperature was closer to the optimal temperature. In the presence of predator cues, warming decreased survival, indicating a synergistic effect of these two variables on survival. In one population, predator cues from perch led to increased survival, especially under the current temperature, likely because of predator stress acclimation phenomena. While warming decreased, predator cues increased larval development time with a proportionally stronger effect of signal crayfish cues experienced during the egg stage, indicating a negative carry-over effect from egg to larva. Warming and predator cues increased mass at emergence, with the predator effect driven mainly by exposure to signal crayfish cues during the egg stage, indicating a positive carry-over effect from egg to adult. Notably, warming and predator effects were not consistent across the two studied populations, suggesting a phenotypic signal of adaptation at a microgeographic scale to thermal conditions and predator history. We also observed pronounced shifts during ontogeny from synergistic (egg and early larval stage) toward additive (late larval stage up to emergence) effects between warming and predator stress. The results point out that population- and life-stage-specific responses in life-history traits to NCEs are needed to predict fitness consequences of exposure to native and invasive predators and warming in prey at a microgeographic scale

An, C.H., Cheon, K.S., Jang, J.E., Choi, J.K., Lee, H.G., 2022. Complete mitochondrial genome of large dragonfly (Macromia amphigena). Mitochondrial. DNA B Resour. 7, 377-378.
Abstract: The complete mitochondrial genome of Macromia amphigena (Odonata; Macromiidae; Macromia) was sequenced and found to be 15,594 bp in length including 37 genes (thirteen protein-coding genes (PCGs), 22 transfer RNAs (tRNAs) and two ribosomal RNAs (rRNAs) and a non-coding region). The overall GC content of the mitochondrial genome for M. amphigena was 28.4%. A phylogenetic analysis conducted for 13 species within the order Odonata suggested that Macromia daimoji is the most closely related to M. amphigena

Andres, J.A., Cordero, R.A., 2000. Copulation duration and fertilization success in a damselfly: an example of cryptic female choice? Anim Behav. 59, 695-703.
Abstract: Copulation duration is highly variable (0.5-3 h) in the damselfly, Ceriagrion tenellum (Coenagrionidae). Using laboratory experiments, we tested four adaptive hypotheses to explain this variation: the effect of time constraints, in-copula mate guarding, sperm displacement and cryptic female choice. Copulation duration was negatively correlated with time of day, as predicted by the first two hypotheses, and positively correlated with male density, as predicted by the mate-guarding hypothesis. Males prolonged copulation in response to the volume of sperm stored by females, suggesting they were able to detect and quantify the amount of sperm stored. This behaviour is not explained by mate guarding or time constraint effects. Males removed all the sperm from the bursa copulatrix in just 10 min. Our results also suggest that, because the duct is too narrow to allow male genitalia to enter, males do not remove spermathecal sperm. Therefore, direct sperm removal could not explain long copulations. Prolonged copulations could also have evolved as a result of cryptic female choice if they increase male fertilization success by female-mediated processes. Our results support this idea: male fertilization success was greater after long copulations. Apparently, male copulatory behaviour elicits female responses that increase male fertilization success. Copyright 2000 The Association for the Study of Animal Behaviour

Archibald, S.B., Cannings, R.A., Erickson, R.J., Bybee, S.M., Mathewes, R.W., 2021. The Cephalozygoptera, a new, extinct suborder of Odonata with new taxa from the early Eocene Okanagan Highlands, western North America. Zootaxa. 4934, zootaxa.
Abstract: We describe the Cephalozygoptera, a new, extinct suborder of Odonata, composed of the families Dysagrionidae and Sieblosiidae, previously assigned to the Zygoptera, and possibly the Whetwhetaksidae n. fam. The Cephalozygoptera is close to the Zygoptera, but differs most notably by distinctive head morphology. It includes 59 to 64 species in at least 19 genera and one genus-level parataxon. One species is known from the Early Cretaceous (Congqingia rhora Zhang), possibly three from the Paleocene, and the rest from the early Eocene through late Miocene. We describe new taxa from the Ypresian Okanagan Highlands of British Columbia, Canada and Washington, United States of America: 16 new species of Dysagrionidae of the existing genus Dysagrion (D. pruettae); the new genera Okanagrion (O. threadgillae, O. hobani, O. beardi, O. lochmum, O. angustum, O. dorrellae, O. liquetoalatum, O. worleyae, all new species); Okanopteryx (O. jeppesenorum, O. fraseri, O. macabeensis, all new species); Stenodiafanus (S. westersidei, new species); the new genus-level parataxon Dysagrionites (D. delinei new species, D. sp. A, D. sp. B, both new); and one new genus and species of the new family Whetwhetaksidae (Whetwhetaksa millerae)

Aromaa, S., Ilvonen, J.J., Suhonen, J., 2019. Body mass and territorial defence strategy affect the territory size of odonate species. Proc. Biol. Sci. 286, 20192398.
Abstract: The territory is a distinct mating place that a male defends against intruding conspecific males. The size of a territory varies between species and most of the variation between species has been found to scale allometrically with body mass. The variation that could not be explained by body mass has been explained with several variables such as habitat productivity, trophic level, locomotion strategy and thermoregulation. All previous interspecific comparative studies have been done on vertebrate species such as birds, mammals, reptiles and fishes, meaning that studies using invertebrate species are missing. Here, we studied the relationship of a species's territory size with its fresh body mass (FBM) in addition to other ecologically relevant traits using 86 damselfly and dragonfly (Odonata) species. We found that territory size is strongly affected by species FBM, following an allometric relationship similar to vertebrates. We also found that the territory size of a species was affected by its territorial defence strategy, constantly flying species having larger territories than species that mostly perch. Breeding habitat or the presence of sexual characters did not affect territory sizes, but lotic species and species without wing spots had steeper allometric slopes. It seems that an increase in a species's body mass increases its territory size and may force the species to shift its territory defence strategy from a percher to a flier

Assandri, G., Franceschini, A., Lencioni, V., 2019. Dragonfly biodiversity 90 years ago in an Alpine region: The Odonata historical collection of the MUSE (Trento, Italy). Biodivers. Data. J. e32391.
Abstract: Background: Historical collections of natural science museums play a fundamental role in documenting environmental changes and patterns of biodiversity transformation. This considered, they should have a pivotal role to plan conservation and management actions.

Babik, W., Dudek, K., Marszalek, M., Palomar, G., Antunes, B., & Sniegula, S. (2023). The genomic response to urbanization in the damselfly Ischnura elegans. Evol. Appl. 16, 1805-1818, doi:EVA13603 [pii];10.1111/eva.13603 [doi].
Abstract: The complex and rapid environmental changes brought about by urbanization pose significant challenges to organisms. The multifaceted effects of urbanization often make it difficult to define and pinpoint the very nature of adaptive urban phenotypes. In such situations, scanning genomes for regions differentiated between urban and non-urban populations may be an attractive approach. Here, we investigated the genomic signatures of adaptation to urbanization in the damselfly Ischnura elegans sampled from 31 rural and urban localities in three geographic regions: southern and northern Poland, and southern Sweden. Genome-wide variation was assessed using more than 370,000 single nucleotide polymorphisms (SNPs) genotyped by ddRADseq. Associations between SNPs and the level of urbanization were tested using two genetic environment association methods: Latent Factors Mixed Models and BayPass. While we found numerous candidate SNPs and a highly significant overlap between candidates identified by the two methods within the geographic regions, there was a distinctive lack of repeatability between the geographic regions both at the level of individual SNPs and of genomic regions. However, we found "synapse organization" at the top of the functional categories enriched among the genes located in the proximity of the candidate urbanization SNPs. Interestingly, the overall significance of "synapse organization" was built up by the accretion of different genes associated with candidate SNPs in different geographic regions. This finding is consistent with the highly polygenic nature of adaptation, where the response may be achieved through a subtle adjustment of allele frequencies in different genes that contribute to adaptive phenotypes. Taken together, our results point to a polygenic adaptive response in the nervous system, specifically implicating genes involved in synapse organization, which mirrors the findings from several genomic and behavioral studies of adaptation to urbanization in other taxa

Bagheri ZM, Cazzolato BS, Grainger S, O'Carroll DC, Wiederman SD. 2017. An autonomous robot inspired by insect neurophysiology pursues moving features in natural environments. J Neural Eng 14:046030.
Abstract: OBJECTIVE: Many computer vision and robotic applications require the implementation of robust and efficient target-tracking algorithms on a moving platform. However, deployment of a real-time system is challenging, even with the computational power of modern hardware. Lightweight and low-powered flying insects, such as dragonflies, track prey or conspecifics within cluttered natural environments, illustrating an efficient biological solution to the target-tracking problem. APPROACH: We used our recent recordings from 'small target motion detector' neurons in the dragonfly brain to inspire the development of a closed-loop target detection and tracking algorithm. This model exploits facilitation, a slow build-up of response to targets which move along long, continuous trajectories, as seen in our electrophysiological data. To test performance in real-world conditions, we implemented this model on a robotic platform that uses active pursuit strategies based on insect behaviour. MAIN RESULTS: Our robot performs robustly in closed-loop pursuit of targets, despite a range of challenging conditions used in our experiments; low contrast targets, heavily cluttered environments and the presence of distracters. We show that the facilitation stage boosts responses to targets moving along continuous trajectories, improving contrast sensitivity and detection of small moving targets against textured backgrounds. Moreover, the temporal properties of facilitation play a useful role in handling vibration of the robotic platform. We also show that the adoption of feed-forward models which predict the sensory consequences of self-movement can significantly improve target detection during saccadic movements. SIGNIFICANCE: Our results provide insight into the neuronal mechanisms that underlie biological target detection and selection (from a moving platform), as well as highlight the effectiveness of our bio-inspired algorithm in an artificial visual system

Baker,R.L. 1989. Condition and size of damselflies: a field study of food limitation. Oecologia. 81:111-119.
Abstract: Based on evidence from field manipulations, several authors have recently suggested that interference competition among larval odonates reduces individual growth rates and biomass by reducing foraging rates. This study was designed to test the effects of food shortage on "condition" (relative mass per unit head width) of larval Ischnura verticalis (Odonata: Coenagrionidae) under laboratory conditions and to use these results to estimate the degree of food shortage of larvae under naturally occurring field conditions. In the laboratory, there were marked differences in condition of larvae fed diets ranging from ad libitum feeding with worms to ad libitum feeding with Daphnia 1 day out of every 8. Condition of larvae collected from May through October from 17 different sites in southern Ontario indicated that, for most of the year, larvae had conditions similar to those fed ad libitum with Daphnia in the laboratory. There was no evidence that larval condition was related to population density. Condition of larvae in most sites during July was similar to that of larvae fed poor diets in the laboratory. It is unlikely that the low conditions were due to competition as there were no correlations with density across sites and population densities during July were at their lowest. Adult head widths showed a seasonal decline from mid June to the end of the flight season. There was no evidence that head widths were related to population density although there was some evidence that head widths of males were positively related to larval condition. My results do not support the hypothesis that competition is important in affecting foraging rates and subsequent development of larvae. Contrasts between my results and other studies may stem from difficulties with the interpretation of field experiments, that densities in my study may have been low due to fish predation, and/or that I. verticalis larvae are slow moving relative to other larvae and thus less likely to interact

Ball-Damerow, J.E., Oboyski, P.T., Resh, V.H., 2015. California dragonfly and damselfly (Odonata) database: temporal and spatial distribution of species records collected over the past century. Zookeys 482: 67-89.
Abstract: The recently completed Odonata database for California consists of specimen records from the major entomology collections of the state, large Odonata collections outside of the state, previous literature, historical and recent field surveys, and from enthusiast group observations. The database includes 32,025 total records and 19,000 unique records for 106 species of dragonflies and damselflies, with records spanning 1879-2013. Records have been geographically referenced using the point-radius method to assign coordinates and an uncertainty radius to specimen locations. In addition to describing techniques used in data acquisition, georeferencing, and quality control, we present assessments of the temporal, spatial, and taxonomic distribution of records. We use this information to identify biases in the data, and to determine changes in species prevalence, latitudinal ranges, and elevation ranges when comparing records before 1976 and after 1979. The average latitude of where records occurred increased by 78 km over these time periods. While average elevation did not change significantly, the average minimum elevation across species declined by 108 m. Odonata distribution may be generally shifting northwards as temperature warms and to lower minimum elevations in response to increased summer water availability in low-elevation agricultural regions. The unexpected decline in elevation may also be partially the result of bias in recent collections towards centers of human population, which tend to occur at lower elevations. This study emphasizes the need to address temporal, spatial, and taxonomic biases in museum and observational records in order to produce reliable conclusions from such data

Barmentlo, S.H., Schrama, M., de Snoo, G.R., van Bodegom, P.M., van, N.A., Vijver, M.G., 2021. Experimental evidence for neonicotinoid driven decline in aquatic emerging insects. Proc. Natl. Acad. Sci. U. S. A 118.
Abstract: There is an ongoing unprecedented loss in insects, both in terms of richness and biomass. The usage of pesticides, especially neonicotinoid insecticides, has been widely suggested to be a contributor to this decline. However, the risks of neonicotinoids to natural insect populations have remained largely unknown due to a lack of field-realistic experiments. Here, we used an outdoor experiment to determine effects of field-realistic concentrations of the commonly applied neonicotinoid thiacloprid on the emergence of naturally assembled aquatic insect populations. Following application, all major orders of emerging aquatic insects (Coleoptera, Diptera, Ephemeroptera, Odonata, and Trichoptera) declined strongly in both abundance and biomass. At the highest concentration (10 microg/L), emergence of most orders was nearly absent. Diversity of the most species-rich family, Chironomidae, decreased by 50% at more commonly observed concentrations (1 microg/L) and was generally reduced to a single species at the highest concentration. Our experimental findings thereby showcase a causal link of neonicotinoids and the ongoing insect decline. Given the urgency of the insect decline, our results highlight the need to reconsider the mass usage of neonicotinoids to preserve freshwater insects as well as the life and services depending on them

Barnard AA, Fincke OM, McPeek MA, Masly JP. 2017. Mechanical and tactile incompatibilities cause reproductive isolation between two young damselfly species. Evolution 71: 2410-2427.
Abstract: External male reproductive structures have received considerable attention as a cause of reproductive isolation (RI), because the morphology of these structures often evolves rapidly between populations. This rapid evolution presents the potential for mechanical incompatibilities with heterospecific female structures during mating and could thus prevent interbreeding between nascent species. Although such mechanical incompatibilities have received little empirical support as a common cause of RI, the potential for mismatch of reproductive structures to cause RI due to incompatible species-specific tactile cues has not been tested. We tested the importance of mechanical and tactile incompatibilities in RI between Enallagma anna and E. carunculatum, two damselfly species that diverged within the past approximately 250,000 years and currently hybridize in a sympatric region. We quantified 19 prezygotic and postzygotic RI barriers using both naturally occurring and laboratory-reared damselflies. We found incomplete mechanical isolation between the two pure species and between hybrid males and pure species females. Interestingly, in mating pairs for which mechanical isolation was incomplete, females showed greater resistance and refusal to mate with hybrid or heterospecific males compared to conspecific males. This observation suggests that tactile incompatibilities involving male reproductive structures can influence female mating decisions and form a strong barrier to gene flow in early stages of speciation

Batista, J.D., Ferreira, V.R.S., Cabette, H.S.R., de Castro, L.A., De, M.P., Juen, L., 2021. Sampling efficiency of a protocol to measure Odonata diversity in tropical streams. PLoS. One. 16,  e0248216.
Abstract: Odonata can be sampled following different types of protocols. In Brazil, the most used protocol is the scanning in fixed areas method, where a 100-meter transect is delimited in one of the stream margins, subdivided into 20 segments measuring 5 meters. Despite being universally used, the methodological efficiency or limitations of this protocol for Odonata has never been tested. In this scenario, our objective was to assess the efficiency of the sampling protocol to measure the richness and composition of Odonata in three fundamental aspects: the time of sampling and sampling effort over time and space. We show that the best sampling efficiency was achieved in collections performed at noon, in transects measuring 100 meters, requiring at least two samplings in the same location, supporting the procedures traditionally adopted by many studies with the group. While comparing species composition, we did not see any implication between the different treatments on the capture of the local species pool. However, we highlight and discuss some possible methodological flaws when using this protocol to sample specific Odonata groups. We believe the results obtained are fundamental in the inventory of species and to conduct future studies, as well as to aid conservative measures that use the order Odonata as a tool for environmental monitoring

Bauerheim, M., Chapin, V., 2020. Route to chaos on a dragonfly wing cross section in gliding flight. Phys. Rev. E. 102, 011102.
Abstract: The route from linear towards nonlinear and chaotic aerodynamic regimes of a fixed dragonfly wing cross section in gliding flight is investigated numerically using direct Navier-Stokes simulations (DNSs). The dragonfly wing consists of two corrugations combined with a rear arc, which is known to provide overall good aerodynamic mean performance at low Reynolds numbers. First, the three regimes (linear, nonlinear, and chaotic) are characterized, and validated using two different fluid solvers. In particular, a peculiar transition to chaos when changing the angle of attack is observed for both solvers: The system undergoes a sudden transition to chaos in less than 0.1^{ composite function}. Second, a physical insight is given on the flow interaction between the corrugations and the rear arc, which is shown as the key phenomenon controlling the unsteady vortex dynamics and the sudden transition to chaos. Additionally, aerodynamic performances in the three regimes are given, showing that optimal performances are closely connected to the transition to chaos

Baumler,F., S.N.Gorb, and S.Busse. 2018. Comparative morphology of the thorax musculature of adult Anisoptera (Insecta: Odonata): Functional aspects of the flight apparatus. In press, Arthropod.Struct.Dev.
Abstract: Due to their unique flight mechanism including a direct flight musculature, Odonata show impressive flight skills. Several publications addressed the details of this flight apparatus like: sclerites, wings, musculature, and flight aerodynamics. However, 3D-analysis of the thorax musculature of adult dragonflies was not studied before and this paper allows for a detailed insight. We therefore, focused on the thorax musculature of adult Anisoptera using micro-computed tomography. Herewith, we present a comparative morphological approach to identify differences within Anisoptera: Aeshnidae, Corduliidae, Gomphidae, and Libellulidae. In total, 54 muscles were identified: 16 prothoracic, 19 mesothoracic, and 19 metathoracic. Recorded differences were for example, the reduction of muscle Idlm4 and an additional muscle IIIdlm1 in Aeshna cyanea, previously described as rudimentary or missing. Muscle Iscm1, which was previously reported missing in all Odonata, was found in all investigated species. The attachment of muscle IIpcm2 in Pantala flavescens is interpreted as a probable adaption to its long-distance migration behaviour. Furthermore, we present a review of functions of the odonatan flight muscles, considering previous publications. The data herein set a basis for functional and biomechanical studies of the flight apparatus and will therefore lay the foundation for a better understanding of the odonatan flight

Berry, R., van, K.J., Stange, G., 2007. The mapping of visual space by dragonfly lateral ocelli. J. Comp Physiol A Neuroethol. Sens. Neural Behav. Physiol 193, 495-513.
Abstract: We study the extent to which the lateral ocelli of dragonflies are able to resolve and map spatial information, following the recent finding that the median ocellus is adapted for spatial resolution around the horizon. Physiological optics are investigated by the hanging-drop technique and related to morphology as determined by sectioning and three-dimensional reconstruction. L-neuron morphology and physiology are investigated by intracellular electrophysiology, white noise analysis and iontophoretic dye injection. The lateral ocellar lens consists of a strongly curved outer surface, and two distinct inner surfaces that separate the retina into dorsal and ventral components. The focal plane lies within the dorsal retina but proximal to the ventral retina. Three identified L-neurons innervate the dorsal retina and extend the one-dimensional mapping arrangement of median ocellar L-neurons, with fields of view that are directed at the horizon. One further L-neuron innervates the ventral retina and is adapted for wide-field intensity summation. In both median and lateral ocelli, a distinct subclass of descending L-neuron carries multi-sensory information via graded and regenerative potentials. Dragonfly ocelli are adapted for high sensitivity as well as a modicum of resolution, especially in elevation, suggesting a role for attitude stabilisation by localization of the horizon

Berry, R.P., Stange, G., Warrant, E.J., 2007. Form vision in the insect dorsal ocelli: an anatomical and optical analysis of the dragonfly median ocellus. Vision Res. 47, 1394-1409.
Abstract: Previous work has suggested that dragonfly ocelli are specifically adapted to resolve horizontally extended features of the world, such as the horizon. We investigate the optical and anatomical properties of the median ocellus of Hemicordulia tau and Aeshna mixta to determine the extent to which the findings support this conclusion. Dragonfly median ocelli are shown to possess a number of remarkable properties: astigmatism arising from the elliptical shape of the lens is cancelled by the bilobed shape of the inner lens surface, interference microscopy reveals complex gradients of refractive index within the lens, the morphology of the retina results in zones of high acuity, and the eye has an exceedingly high sensitivity for a diurnal terrestrial invertebrate. It is concluded that dragonfly ocelli employ a number of simple, yet elegant, anatomical and optical strategies to ensure high sensitivity, fast transduction speed, wide fields of views and a modicum of spatial resolving power

Bick, G.H., Bick, J.C., 1965. Sperm transfer in damselflies (Odonata: Zygoptera). Ann. Entomol. Soc. Am. 58, 592.

Blaha, M., Grabicova, K., Shaliutina, O., Kubec, J., Randak, T., Zlabek, V., Buric, M., Vesely, L., 2019. Foraging behaviour of top predators mediated by pollution of psychoactive pharmaceuticals and effects on ecosystem stability. Sci. Total. Environ. 662, 655-661.
Abstract: Although pharmaceuticals are recognized as a major threat to aquatic ecosystems worldwide, little is known about their ecological effect on aquatic biota and ecosystems. Drug-induced behaviour changes could have a substantial impact on consumer-resource interactions influencing stability of the community and ecosystem. We combined laboratory experiments and functional response modelling to investigate effects of real wastewater treatment plant (WWTP) effluent, as well as environmentally relevant concentrations of the antidepressants citalopram and opioid pain medication tramadol, on trophic interactions. Our biological system consisted of dragonfly Aeshna cyanea larvae as predator of common carp Cyprinus carpio fry. Exposure to WWTP effluent significantly increased A. cyanea maximum feeding rate, while those parameters in tramadol and citalopram-exposed larvae were significantly lower from unexposed control group. This suggested the potential of all tested pollutants to have an effect on consumer-resource equilibrium in aquatic ecosystems. While WWTP effluent strengthened interaction strength (IS) of consumer-resource interaction dynamics making the food web more vulnerable to fluctuation and destabilization, tramadol and citalopram could inhibit the potential oscillations of the consumer-resource system by weakening the IS. Similar studies to reveal the potential of pervasive pharmaceuticals to change of consumer-resource interactions dynamics are needed, especially when real WWTP effluent consisting of mixture of various pharmaceuticals displayed very different effect from single compounds tested

Blanke A, Schmitz H, Patera A, Dutel H, Fagan MJ. 2017. Form-function relationships in dragonfly mandibles under an evolutionary perspective. J R Soc Interface 14: 20161038.
Abstract: Functional requirements may constrain phenotypic diversification or foster it. For insect mouthparts, the quantification of the relationship between shape and function in an evolutionary framework remained largely unexplored. Here, the question of a functional influence on phenotypic diversification for dragonfly mandibles is assessed with a large-scale biomechanical analysis covering nearly all anisopteran families, using finite element analysis in combination with geometric morphometrics. A constraining effect of phylogeny could be found for shape, the mandibular mechanical advantage (MA), and certain mechanical joint parameters, while stresses and strains, the majority of joint parameters and size are influenced by shared ancestry. Furthermore, joint mechanics are correlated with neither strain nor mandibular MA and size effects have virtually play no role for shape or mechanical variation. The presence of mandibular strengthening ridges shows no phylogenetic signal except for one ridge peculiar to Libelluloidea, and ridge presence is also not correlated with each other. The results suggest that functional traits are more variable at this taxonomic level and that they are not influenced by shared ancestry. At the same time, the results contradict the widespread idea that mandibular morphology mainly reflects functional demands at least at this taxonomic level. The varying functional factors rather lead to the same mandibular performance as expressed by the MA, which suggests a many-to-one mapping of the investigated parameters onto the same narrow mandibular performance space

Bode-Oke AT, Zeyghami S, Dong H. 2017. Aerodynamics and flow features of a damselfly in takeoff flight. Bioinspir Biomim 12:056006.
Abstract: Flight initiation is fundamental for survival, escape from predators and lifting payload from one place to another in biological fliers and can be broadly classified into jumping and non-jumping takeoffs. During jumping takeoffs, the legs generate most of the initial impulse. Whereas the wings generate most of the forces in non-jumping takeoffs, which are usually voluntary, slow, and stable. It is of great interest to understand how these non-jumping takeoffs occur and what strategies insects use to generate large amount of forces required for this highly demanding flight initiation mode. Here, for the first time, we report accurate wing and body kinematics measurements of a damselfly during a non-jumping takeoff. Furthermore, using a high fidelity computational fluid dynamics simulation, we identify the 3D flow features and compute the wing aerodynamics forces to unravel the key mechanisms responsible for generating large flight forces. Our numerical results show that a damselfly generates about three times its body weight during the first half-stroke for liftoff. In generating these forces, the wings flap through a steeply inclined stroke plane with respect to the horizon, slicing through the air at high angles of attack (45 degrees -50 degrees ). Consequently, a leading edge vortex (LEV) is formed during both the downstroke and upstroke on all the four wings. The formation of the LEV, however, is inhibited in the subsequent upstrokes following takeoff. Accordingly, we observe a drastic reduction in the magnitude of the aerodynamic force, signifying the importance of LEV in augmenting force production. Our analysis also shows that forewing-hindwing interaction plays a favorable role in enhancing both lift and thrust production during takeoff

Bogan, M.T., Eppehimer, D., Hamdhani, H., Hollien, K., 2020. If you build it, they will come: rapid colonization by dragonflies in a new effluent-dependent river reach. PeerJ. 8, e9856.
Abstract: Background: Aquatic ecosystems are greatly altered by urban development, including the complete loss of natural habitat due to water diversions or channel burial. However, novel freshwater habitats also are created in cities, such as effluent-dependent streams that rely on treated wastewater for flow. It is unclear how diverse these novel ecosystems are, or how quickly aquatic species are able to colonize them. In this study, we (1) quantify odonate (Insecta, Odonata) colonization of a novel effluent-dependent river reach, (2) examine how drying events affect odonates in these novel habitats, and (3) explore whether effluent-dependent streams can support diverse odonate assemblages. Methods: We conducted monthly odonate surveys at three sites along the Santa Cruz River (Tucson, AZ, USA) between June 2019 and May 2020. One site was in a long-established effluent-dependent reach (flowing since the 1970s) that served as a reference site and two sites were in a newly-established reach that began flowing on June 24, 2019 (it was previously dry). We compared odonate species richness, assemblage composition, and colonization patterns across these reaches, and examined how these factors responded to flow cessation events in the new reach. Results: Seven odonate species were observed at the study sites in the new reach within hours of flow initiation, and species rapidly continued to arrive thereafter. Within 3 months, species richness and assemblage composition of adult odonates were indistinguishable in the new and reference reaches. However, drying events resulted in short-term and chronic reductions in species richness at one of the sites. Across all three sites, we found over 50 odonate species, which represent nearly 40% of species known from the state of Arizona. Discussion: Odonates were surprisingly diverse in the effluent-dependent Santa Cruz River and rapidly colonized a newly established reach. Richness levels remained high at study sites that did not experience drying events. These results suggest that consistent discharge of high-quality effluent into dry streambeds can be an important tool for promoting urban biodiversity. However, it remains to be seen how quickly and effectively less vagile taxa (e.g., mayflies, caddisflies) can colonize novel reaches. Effluent-dependent urban streams will always be highly managed systems, but collaboration between ecologists and urban planners could help to maximize aquatic biodiversity while still achieving goals of public safety and urban development

Bomphrey, R.J., Nakata, T., Henningsson, P., Lin, H.T., 2016. Flight of the dragonflies and damselflies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371: 20150389.
Abstract: This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'

Borges, L.R., Barbosa, M.S., Carneiro, M.A.A., Santos, J.C., 2020. Habitat integrity drives Odonata diversity in Eucalyptus-dominated landscape. Environ. Monit. Assess. 193, 12.
Abstract: Silviculture can be considered a sustainable alternative to the extraction of wood from natural forests in Brazil. However, the high demand for wood products has decreased the area of natural Cerrado due to land transformation for forestry activities. This transformation could lead to the loss of species, including insects that cannot tolerate the new environment dominated by exotic plant species. This study aims to evaluate whether the presence of an extensive Eucalyptus silviculture in the Brazilian Cerrado decreases the integrity of nearby riparian environments and, consequently, decreases odonate diversity. Thirteen ponds were selected in patches of Cerrado embedded within a matrix of Eucalyptus silviculture in order to assess habitat integrity of ponds and their riparian zones and collect adult odonates. The physical integrity of the study sites was measured using a Habitat Integrity Index (HII) designed to determine the degree of conservation of aquatic environments. The HII of the study sites varied between 0.44 and 0.80, indicating differences in the degree of conservation. Therefore, a positive relationship was found between odonate richness and abundance and HII, and between the abundance of zygopterans and anisopterans and HII. These findings may be due to the fact that these insects are adapted to the natural resources maintained at the most conserved habitats, and which were lost in degraded riparian zones, such as the presence of aquatic vegetation and a diversity of organic debris on pond banks. We conclude that the conversion of natural areas to Eucalyptus silviculture can alter the integrity of nearby riparian zones and, consequently, odonate diversity.

Borisov, S.N., Iakovlev, I.K., Borisov, A.S., Ganin, M.Y., Tiunov, A.V., 2020. Seasonal Migrations of Pantala flavescens (Odonata: Libellulidae) in Middle Asia and Understanding of the Migration Model in the Afro-Asian Region Using Stable Isotopes of Hydrogen. Insects. 11.
Abstract: In Middle Asia, the dragonfly Pantala flavescens makes regular seasonal migrations. In spring, sexually mature dragonflies (immigrants) arrive in this region for reproduction. Dragonflies of the aboriginal generation (residents) develop in about two months, and migrate south in autumn. Residents of Middle Asia have significantly lower delta(2)H values (-123.5 (SD 17.2)per 10 thousand, n = 53) than immigrants (-64.4 (9.7)per 10 thousand, n = 12), as well as aboriginal dragonfly species from Ethiopia (-47.9 (10.8)per 10 thousand, n = 4) and the Sahel zone (-50.1 (15.5)per 10 thousand, n = 11). Phenological data on P. flavescens in the Afro-Asian region and a comparison with published isotopic data on migratory insects from this region suggest that (i) the probable area of origin of P. flavescens immigrants is located in tropical parts of East Africa and/or the Arabian Peninsula and (ii) the autumn migration of Middle Asian residents to the south may also pass through the Indian Ocean. We assume that in the Afro-Asian region, there is an extensive migration circle of P. flavescens covering East Africa, Central Asia and the Indian subcontinent with a total length of more than 14,000 km

Bowman,R.M., S.Schmidt, C.Weeks, H.Clark, C.Brown, L.C.Latta, and M.Edgehouse. 2018. Phenotypic plasticity in a population of odonates. Sci. Rep. 8:8442.
Abstract: The maintenance of phenotypic plasticity within a species ensures survival through environmental flux. Plastic strategies are increasingly important given the number and magnitude of modern anthropogenic threats to the environment. We tested for phenotypic plasticity in the odonate Argia vivida in response to resource limitation. By limiting food availability, effectively inducing hunger, we were able to quantify shifts in agonistic behavior during intraspecific interactions. Scoring behavior in one-on-one combat trials after 1 and 4 days without food revealed phenotypic plasticity. Three classes of genotypes were identified, genotypes exhibiting either increased aggression, decreased aggression, or no phenotypic plasticity, in response to resource limitation. The variable plastic strategies in this population of odonates likely aids in maintaining fitness in fluctuating environments

Braune, P., Rolff, J., 2001. Parasitism and survival in a damselfly: does host sex matter? Proc. Biol. Sci. 268, 1133-1137.
Abstract: We present experimental data on the survivorship of damselflies infested by parasitic water mites from a population in field cages. In addition, we show correlative laboratory data under simulated severe weather conditions. In the manipulative experiment, parasitized females' individual condition, which was measured as weight at emergence, was an important determinant of survival under field conditions. In contrast, such a relationship did not occur in males and unparasitized females. It was found in the laboratory experiment that water mites as well as weight at emergence both contributed significantly to the reduced survivorship of male and female damselflies. It was concluded that the impact of parasitism depends on environmental conditions and that host sexes differ in their responses to parasitism. This is discussed in the light of immunocompetence in invertebrates

Brito, J. S., Cottenie, K., Brasil, L. S., Bastos, R. C., Ferreira, V. R. S., Cruz, G. M., Lima, D. V. M., Vieira, L. J. S., Michelan, T. S., & Juen, L. (2024). Main drivers of dragonflies and damselflies (Insecta; Odonata) metacommunities in streams inside protected areas in the Brazilian Amazon. Environ. Monit. Assess. 196, 281, doi:10.1007/s10661-024-12444-1 [pii];10.1007/s10661-024-12444-1 [doi].
Abstract: The evaluation of environmental and spatial influence in freshwater systems is crucial for the conservation of aquatic diversity. So, we evaluated communities of Odonata in streams inside and outside sustainable use areas in the Brazilian western Amazon. We predicted that these streams would differ regarding habitat integrity and species alpha and beta diversity. We also predict that environmental and spatial variables will be important for both suborders, but with more substantial effects on Zygoptera species, considering their nature of forest-specialist. The study was conducted in 35 streams, 19 inside and 16 outside sustainable use areas. The streams outside presented high species richness, abundance, and number of exclusive forest-specialist species from Zygoptera and higher scores of habitat integrity. In contrast, one sustainable use area presented the lowest values of these metrics. Besides, we found that environmental and spatial variables were significantly associated to Zygoptera species composition, but not with Anisoptera, which can be explained by their cosmopolitan nature. Our results indicated that an interplay between environmental and spatial processes determines the structure of the metacommunities of Zygoptera. The less effective dispersal rates and narrow ecological tolerance of Zygoptera species make them more influenced by local conditions and dispersal limitation, and more sensible to habitat modifications. We highlight the importance of improving the local management of the sustainable use areas by environmental agencies, mainly on areas that are losing their capacity to maintain the aquatic fauna, and implementation of social policies toward traditional people

Brydegaard,M., S.Jansson, M.Schulz, and A.Runemark. 2018. Can the narrow red bands of dragonflies be used to perceive wing interference patterns? Ecol. Evol. 8:5369-5384.
Abstract: Despite numerous studies of selection on position and number of spectral vision bands, explanations to the function of narrow spectral bands are lacking. We investigate dragonflies (Odonata), which have the narrowest spectral bands reported, in order to investigate what features these narrow spectral bands may be used to perceive. We address whether it is likely that narrow red bands can be used to identify conspecifics by the optical signature from wing interference patterns (WIPs). We investigate the optical signatures of Odonata wings using hyperspectral imaging, laser profiling, ellipsometry, polarimetric modulation spectroscopy, and laser radar experiments. Based on results, we estimate the prospects for Odonata perception of WIPs to identify conspecifics in the spectral, spatial, intensity, polarization, angular, and temporal domains. We find six lines of evidence consistent with an ability to perceive WIPs. First, the wing membrane thickness of the studied Odonata is 2.3 mum, coinciding with the maximal thickness perceivable by the reported bandwidth. Second, flat wings imply that WIPs persist from whole wings, which can be seen at a distance. Third, WIPs constitute a major brightness in the visual environment only second after the solar disk. Fourth, WIPs exhibit high degree of polarization and polarization vision coincides with frontal narrow red bands in Odonata. Fifth, the angular light incidence on the Odonata composite eye provides all prerequisites for direct assessment of the refractive index which is associated with age. Sixth, WIPs from conspecifics in flight make a significant contribution even to the fundamental wingbeat frequency within the flicker fusion bandwidth of Odonata vision. We conclude that it is likely that WIPs can be perceived by the narrow red bands found in some Odonata species and propose future behavioral and electrophysiological tests of this hypothesis

Buczynska, E., Buczynski, P., 2019. Survival under anthropogenic impact: the response of dragonflies (Odonata), beetles (Coleoptera) and caddisflies (Trichoptera) to environmental disturbances in a two-way industrial canal system (central Poland). PeerJ. 6, e6215.

Abstract: Ecological metrics and assemblages of three orders of aquatic insects (Odonata, Coleoptera and Trichoptera-OCT) in an industrial canal system affected by dredging were studied. Five sites (a river as a control site and canals) along the Vistula River in Central Poland were sampled during six sampling periods (2011 and 2013). Canonical correspondence analyses (CCA) was used to assess the influence of environmental variables on the distribution of 54 insect species in the following system of habitats-a river feeding the canals, river-fed inlet canals and outlet canals with cooling waters. Additionally, before and after control impact (BACI) was used to test for the impact of canal dredging in 2011 on the insect response metrics. Non-metric multidimensional scaling analysis differentiated insect assemblages of the three habitats and similarity percentage (SIMPER) indicated the species most responsible for the faunistic dissimilarities. Temperature was found to be a key factor governing the presence of insects in the outlet canals with cooling water. CCAs revealed that electrolytic conductivity (EC) and salinity had the greatest influence on the OCT fauna in the river and the inlet canals, whilst it was the dissolved oxygen and the level of development of aquatic plants that proved most important in the outlet canals. Modified ANOVAs showed that dredging significantly affected the mean species richness and the dominance in the canals. The changes in OCT species composition were highly informative. The comparison between tolerance patterns of the OCT orders against the five parameters (temperature, EC, total dissolved solids (TDS), pH and current) revealed that caddisflies are the most sensitive group, followed by Coleoptera while Odonata proved the most resistant. Dragonflies have the greatest potential to serve as bioindicators of industrially heated waters. The OCT fauna responded specifically to different environmental factors and stressors, it is strongly recommended to track the responses on different levels, not only metrics, but above all, species

Buczynska, E., Buczynski, P., 2019. Aquatic Insects of Man-Made Habitats: Environmental Factors Determining the Distribution of Caddisflies (Trichoptera), Dragonflies (Odonata), and Beetles (Coleoptera) in Acidic Peat Pools. J. Insect. Sci. 19.
Abstract: As degradation of sensitive habitats like Sphagnum L. (Sphagnales: Sphagnaceae) peatbogs is endangering their invertebrate fauna, artificial peat pools may offer peatbog insect fauna a chance of survival. The entomofauna of seven peat pools in a peatbog and its surrounding natural marginal zone in SE Poland was investigated at the level of species, assemblages and faunistic metrics, indicating the key environmental drivers of the insect distribution and their implications for the biodiversity and potential conservation of these habitats. The species composition, specialists, and insect assemblages of the peat pools were linked with the fauna typical of both peatbogs and dystrophic pools with an open water surface. The most specialized fauna was found in the pools with the largest Sphagnum cover: only tyrphobionts, of all the ecological elements, significantly discriminated the fauna of peat pools and the marginal zone. Sphagnum cover was the key structural factor affecting the distribution of all the insects. Additionally, dragonflies were dependent on pH, beetles on temperature, and caddisflies on dissolved oxygen; however, structural factors-apart from Sphagnum cover-pool perimeter and emergent vegetation cover were predominant. Our results show that appropriate management of the structural factors of peat pools, especially Sphagnum cover, and the provision of different successional stages, can enhance biodiversity and help to maintain a valuable specialist fauna. Even along small environmental gradients and in a homogeneous area, the response of insects is highly differentiated. Dragonflies probably best represent the conservation value of the overall invertebrate fauna of Sphagnum bogs

Bush, A.A., Nipperess, D.A., Duursma, D.E., Theischinger, G., Turak, E., Hughes, L., 2014. Continental-scale assessment of risk to the Australian odonata from climate change. PLoS. One. 9, e88958.
Abstract: Climate change is expected to have substantial impacts on the composition of freshwater communities, and many species are threatened by the loss of climatically suitable habitat. In this study we identify Australian Odonata (dragonflies and damselflies) vulnerable to the effects of climate change on the basis of exposure, sensitivity and pressure to disperse in the future. We used an ensemble of species distribution models to predict the distribution of 270 (85%) species of Australian Odonata, continent-wide at the subcatchment scale, and for both current and future climates using two emissions scenarios each for 2055 and 2085. Exposure was scored according to the departure of temperature, precipitation and hydrology from current conditions. Sensitivity accounted for change in the area and suitability of projected climatic habitat, and pressure to disperse combined measurements of average habitat shifts and the loss experienced with lower dispersal rates. Streams and rivers important to future conservation efforts were identified based on the sensitivity-weighted sum of habitat suitability for the most vulnerable species. The overall extent of suitable habitat declined for 56-69% of the species modelled by 2085 depending on emissions scenario. The proportion of species at risk across all components (exposure, sensitivity, pressure to disperse) varied between 7 and 17% from 2055 to 2085 and a further 3-17% of species were also projected to be at high risk due to declines that did not require range shifts. If dispersal to Tasmania was limited, many south-eastern species are at significantly increased risk. Conservation efforts will need to focus on creating and preserving freshwater refugia as part of a broader conservation strategy that improves connectivity and promotes adaptive range shifts. The significant predicted shifts in suitable habitat could potentially exceed the dispersal capacity of Odonata and highlights the challenge faced by other freshwater species

Bybee, S., Cordoba-Aguilar, A., Duryea, M.C., Futahashi, R., Hansson, B., Lorenzo-Carballa, M.O., Schilder, R., Stoks, R., Suvorov, A., Svensson, E.I., Swaegers, J., Takahashi, Y., Watts, P.C., Wellenreuther, M., 2016. Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Front Zool. 13, 46.
Abstract: Odonata (dragonflies and damselflies) present an unparalleled insect model to integrate evolutionary genomics with ecology for the study of insect evolution. Key features of Odonata include their ancient phylogenetic position, extensive phenotypic and ecological diversity, several unique evolutionary innovations, ease of study in the wild and usefulness as bioindicators for freshwater ecosystems worldwide. In this review, we synthesize studies on the evolution, ecology and physiology of odonates, highlighting those areas where the integration of ecology with genomics would yield significant insights into the evolutionary processes that would not be gained easily by working on other animal groups. We argue that the unique features of this group combined with their complex life cycle, flight behaviour, diversity in ecological niches and their sensitivity to anthropogenic change make odonates a promising and fruitful taxon for genomics focused research. Future areas of research that deserve increased attention are also briefly outlined

Bybee, S.M., Kalkman, V.J., Erickson, R.J., Frandsen, P.B., Breinholt, J.W., Suvorov, A., Dijkstra, K.B., Cordero-Rivera, A., Skevington, J.H., Abbott, J.C., Sanchez, H.M., Lemmon, A.R., Moriarty, L.E., Ware, J.L., 2021. Phylogeny and classification of Odonata using targeted genomics. Mol. Phylogenet. Evol. 160, 107115.
Abstract: Dragonflies and damselflies are a charismatic, medium-sized insect order (~6300 species) with a unique potential to approach comparative research questions. Their taxonomy and many ecological traits for a large fraction of extant species are relatively well understood. However, until now, the lack of a large-scale phylogeny based on high throughput data with the potential to connect both perspectives has precluded comparative evolutionary questions for these insects. Here, we provide an ordinal hypothesis of classification based on anchored hybrid enrichment using a total of 136 species representing 46 of the 48 families or incertae sedis, and a total of 478 target loci. Our analyses recovered the monophyly for all three suborders: Anisoptera, Anisozygoptera and Zygoptera. Although the backbone of the topology was reinforced and showed the highest support values to date, our genomic data was unable to stronglyresolve portions of the topology. In addition, a quartet sampling approach highlights the potential evolutionary scenarios that may have shaped evolutionary phylogeny (e.g., incomplete lineage sorting and introgression) of this taxon. Finally, in light of our phylogenomic reconstruction and previous morphological and molecular information we proposed an updated odonate classification and define five new families (Amanipodagrionidae fam. nov., Mesagrionidae fam. nov., Mesopodagrionidae fam. nov., Priscagrionidae fam. nov., Protolestidae fam. nov.) and reinstate another two (Rhipidolestidae stat. res., Tatocnemididae stat. res.). Additionally, we feature the problematic taxonomic groupings for examination in future studies to improve our current phylogenetic hypothesis

Callahan, M.S., McPeek, M.A., 2016. Multi-locus phylogeny and divergence time estimates of Enallagma damselflies (Odonata: Coenagrionidae). Mol. Phylogenet. Evol. 94, 182-195.
Abstract: Reconstructing evolutionary patterns of species and populations provides a framework for asking questions about the impacts of climate change. Here we use a multilocus dataset to estimate gene trees under maximum likelihood and Bayesian models to obtain a robust estimate of relationships for a genus of North American damselflies, Enallagma. Using a relaxed molecular clock, we estimate the divergence times for this group. Furthermore, to account for the fact that gene tree analyses can overestimate ages of population divergences, we use a multi-population coalescent model to gain a more accurate estimate of divergence times. We also infer diversification rates using a method that allows for variation in diversification rate through time and among lineages. Our results reveal a complex evolutionary history of Enallagma, in which divergence events both predate and occur during Pleistocene climate fluctuations. There is also evidence of diversification rate heterogeneity across the tree. These divergence time estimates provide a foundation for addressing the relative significance of historical climatic events in the diversification of this genus

Cannings, R.A., 2019. Odonata of Canada. Zookeys. 227-241.
Abstract: Since Corbet's thorough 1979 overview of Canadian Odonata, hundreds of regional works on taxonomy, faunistics, distribution, life history, ecology and behaviour have been written. Canada records 214 species of Odonata, an increase of 20 since the 1979 assessment. Estimates of unrecorded species are small; this reflects the well-known nature of the fauna. A major impetus for surveys and analyses of the status of species is the work of the Committee on the Status of Endangered Wildlife in Canada which provides a scientifically sound classification of wildlife species potentially at risk. As of 2017, six species have been designated "Endangered" and two "Special Concern" (only five of which are officially listed under the Federal Species at Risk Act (SARA)). The Order provides a good example of molecular barcoding effort in insects, as many well-accepted morphological species in Canada have been barcoded to some degree. However, more barcoding of accurately identified specimens of many species is still required, especially in most of the larger families, which have less than 70% of their species barcoded. Corbet noted that the larvae of 15 Canadian species were unknown, but almost all larvae are now well, or cursorily, described. Extensive surveys have greatly improved our understanding of species' geographical distributions, habitat requirements and conservation status but more research is required to better define occurrence, abundance and biological details for almost all species

Cao,L.Z., X.W.Fu, C.X.Hu, and K.M.Wu. 2018. Seasonal Migration of Pantala flavescens Across the Bohai Strait in Northern China. Environ. Entomol. 47:264-270.
Abstract: Pantala flavescens (Fabricius 1798) (Odonata: Libellulidae) is one of the most common species of migratory dragonflies. P. flavescens adults were captured by a searchlight trap on Beihuang Island (BH Island; 38 degrees 24'N, 120 degrees 55'E) from 2003 to 2016, where there is no freshwater. This inspired our research to analyze the pattern of seasonal migration and population dynamics. Stable hydrogen isotope measurement and the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) were used to simulate the migration pathway of P. flavescens between different breeding habitats. The results showed that there was no significant difference among population numbers of this overseas migration across years (F13, 2161 = 0.85, P = 0.604); however, the numbers were significantly different across months (F5, 2161 = 3.91, P = 0.003). Our geospatial natal assignment model suggested that P. flavescens trapped on BH were originated in different geographical regions and might have three movement strategies: wandering around northern China and north-bound (positive) and south-bound (negative) movements. Among them, the majority were engaged in wandering around northern China. Model simulations suggested that P. flavescens toured around BH. The results contribute to the knowledge of P. flavescens population ecology in a large-scale geographic region and will aid in the prediction and interpretation of insect migration patterns in response to climate change

Carbonell, J.A., Stoks, R., 2020. Thermal evolution of life history and heat tolerance during range expansions toward warmer and cooler regions. Ecology. e03134.
Abstract: Species' range edges are expanding to both warmer and cooler regions. Yet, no studies directly compared the changes in range-limiting traits within the same species during both types of range expansions. To increase our mechanistic understanding of range expansions, it is crucial to disentangle the contributions of plastic and genetic changes in these traits. The aim of this study was to test for plastic and evolutionary changes in heat tolerance, life history, and behavior, and compare these during range expansions toward warmer and cooler regions. Using laboratory experiments we reconstructed the thermal performance curves (TPCurves) of larval life history (survival, growth, and development rates) and larval heat tolerance (CTmax) across two recent range expansions from the core populations in southern France toward a warmer (southeastern Spain) and a cooler (northwestern Spain) region in Europe by the damselfly Ischnura elegans. First-generation larvae from field-collected mothers were reared across a range of temperatures (16 degrees -28 degrees C) in incubators. The range expansion to the warmer region was associated with the evolution of a greater ability to cope with high temperatures (increased mean and thermal plasticity of CTmax), faster development, and, in part, a faster growth, indicating a higher time constraints caused by a shorter time frame available for larval development associated with a transition to a greater voltinism. Our results thereby support the emerging pattern that plasticity in heat tolerance alone is inadequate to adapt to new thermal regimes. The range expansion to the cooler region was associated with faster growth indicating countergradient variation without a change in CTmax. The evolution of a faster growth rate during both range expansions could be explained by a greater digestive efficiency rather than an increased food intake. Our results highlight that range expansions to warmer and cooler regions can result in similar evolutionary changes in the TPCurves for life history, and no opposite changes in heat tolerance

Carbonell, J.A., Wang, Y.J., Stoks, R., 2021. Evolution of cold tolerance and thermal plasticity in life history, behaviour and physiology during a poleward range expansion. J. Anim Ecol.
Abstract: Many species that are moving polewards encounter novel thermal regimes to which they have to adapt. Therefore, rapid evolution of thermal tolerance and of thermal plasticity in fitness-related traits in edge populations can be crucial for the success and speed of range expansions. We tested for adaptation in cold tolerance and in life history, behavioural and physiological traits and their thermal plasticity during a poleward range expansion. We reconstructed the thermal performance curves of life history (survival, growth and development rates), behaviour (food intake) and cold tolerance (chill coma recovery time) in the aquatic larval stage of the damselfly Ischnura elegans that is currently showing a poleward range expansion in northern Europe. We studied larvae from three edge and three core populations using a common-garden experiment. Consistent with the colder annual temperatures, larvae at the expansion front evolved an improve cold tolerance. The edge populations showed no overall (across temperatures) evolution of a faster life history that would improve their range-shifting ability. Moreover, consistent with damselfly edge populations from colder latitudes, edge populations evolved at the highest rearing temperature (28 degrees C) a faster development rate, likely to better exploit the rare periods with higher temperatures. This was associated with a higher food intake and a lower metabolic rate. In conclusion, our results suggest that the edge populations rapidly evolved adaptive changes in trait means and thermal plasticity to the novel thermal conditions at the edge front. Our results highlight the importance of considering besides trait plasticity and the evolution of trait means, also the evolution of trait plasticity to improve forecasts of responses to climate change

Carr, D.M., Ellsworth, A.A., Fisher, G.L., Valeriano, W.W., Vasco, J.P., Guimaraes, P.S.S., de Andrade, R.R., da Silva, E.R., Rodrigues, W.N., 2018. Characterization of natural photonic crystals in iridescent wings of damselfly Chalcopteryx rutilans by FIB/SEM, TEM, and TOF-SIMS. Biointerphases. 13, 03B406.
Abstract: The iridescent wings of the Chalcopterix rutilans damselfly (Rambur) (Odonata, Polythoridae) are investigated with focused ion beam/scanning electron microscopy, transmission electron microscopy, and time-of-flight secondary ion mass spectrometry. The electron microscopy images reveal a natural photonic crystal as the source of the varying colors. The photonic crystal has a consistent number and thickness ( approximately 195 nm) of the repeat units on the ventral side of the wing, which is consistent with the red color visible from the bottom side of the wing in all regions. The dorsal side of the wing shows strong color variations ranging from red to blue depending on the region. In the electron microscopy images, the dorsal side of the wing exhibits varied number and thicknesses of the repeat units. The repeat unit spacings for the red, yellow/green, and blue regions are approximately 195, 180, and 145 nm, respectively. Three-dimensional analysis of the natural photonic crystals by time-of-flight secondary ion mass spectrometry reveals that changes in the relative levels of Na, K, and eumelanin are responsible for the varying dielectric constant needed to generate the photonic crystal. The photonic crystal also appears to be assembled with a chemical tricomponent layer structure due to the enhancement of the CH6N3(+) species at every other interface between the high/low dielectric constant layers.

Castillo-Perez, E.U., Suarez-Tovar, C.M., Gonzalez-Tokman, D., Schondube, J.E., Cordoba-Aguilar, A., 2022. Insect thermal limits in warm and perturbed habitats: Dragonflies and damselflies as study cases. J. Therm. Biol. 103, 103164.
Abstract: Disturbance (e.g. loss of plant cover) increases ambient temperature which can be lethal for ectotherm insects especially in hot places. We compared the thorax temperatures of 26 odonate species as a function of body size, habitat quality ("conserved" and cooler vs "perturbed" and warmer) and suborder (Anisoptera vs Zygoptera), as well as critical thermal maximum (CTmax) and as a function of habitat quality in Argia pulla (Zygoptera) and Orthemis ferruginea (Anisoptera). We expected thorax temperatures to differ between suborders based on their differences in body size and habitat quality status, and that populations in perturbed sites would have higher critical thermal maxima compared to those in conserved sites. This study was done in a tropical region with high ambient temperatures. Anisopterans had a higher body temperature than zygopterans, with no difference between habitats. Thoracic and air temperature were positively related, yet body temperatures were higher than the ambient temperature. A. pulla had higher CTmax in the perturbed sites, while O. ferruginea showed the opposite trend. Microenvironmental changes increase the ambient temperature, perhaps filtering insect species. The apparent resilience of odonates to disturbance should be examined more closely (using more species), especially in small species like the zygopterans which appear to be more strongly affected by ambient temperature

Cavallaro, M.C., Liber, K., Headley, J.V., Peru, K.M., Morrissey, C.A., 2018. Community-level and phenological responses of emerging aquatic insects exposed to 3 neonicotinoid insecticides: An in situ wetland limnocorral approach. Environ. Toxicol. Chem. 37, 2401-2412.
Abstract: Seasonal aquatic insect emergence represents a critical subsidy link between aquatic and terrestrial ecosystems. Early and late instar larvae developing in wetlands near neonicotinoid-treated cropland can be at risk of chronic insecticide exposure. In the present study, an in situ wetland limnocorral experiment compared emergent insect community responses to imidacloprid, clothianidin, and thiamethoxam. Twenty-one limnocorrals were dosed weekly for 9 wk to target peak nominal doses of 0.0, 0.05, or 0.5 mug/L, followed by a 6-wk recovery period. Thirty-nine aquatic insect taxa were recorded but 11 taxa groups made up 97% of the community composition. Principal response curves (PRCs) indicated that during the dosing period, community composition among the treatments resembled the controls. During the 6-wk recovery period, significant deviance was observed in the high imidacloprid treatment with similar trends in the clothianidin treatment, suggesting that community effects from neonicotinoid exposure can be delayed. Non-biting midges (Diptera: Chironomidae) and damselflies (Odonata: Zygoptera) emerged 18 to 25 d earlier than controls in the imidacloprid and clothianidin neonicotinoid treatments, with no effects from thiamethoxam treatments. These data suggest that phenology and subtle community effects can occur at measured neonicotinoid concentrations of 0.045 (imidacloprid) and 0.038 mug/L (clothianidin) under chronic repeated exposure conditions. Synchronization and community dynamics are critical to aquatic insects and consumers; thus, neonicotinoids may have broad implications for wetland ecosystem function.

Cerini, F., Bologna, M.A., Vignoli, L., 2019. Dragonflies community assembly in artificial habitats: Glimpses from field and manipulative experiments. PLoS. One. 14, e0214127.
Abstract: Several factors act on community structure, so determining species composition and abundance patterns. Core processes operating at local scales, such as species-environment matching and species interactions, shape observed assemblages. Artificial habitats (simplified structure) are useful systems for assessing the main factors affecting community composition and disentangling their assembly rules. Drinking troughs (brickwork tanks for free-ranging cattle watering) are widespread in Italy and represent a suitable aquatic habitat for colonization by various aquatic organisms. Dragonflies larvae are usually found in drinking troughs and often exhibit strong species interactions and striking community assembly patterns. Our primary aim was to search for Odonata communities exhibiting non-random co-occurrence/segregation patterns in drinking troughs. We performed null-model analyses by measuring a co-occurrence index (C-score) on larval Odonata assemblages (13 species from 28 distinct troughs). Overall, we found a non-random structure for the studied dragonfly assemblages, which, given their fast generation time, must have been generated by short-term ecological processes (i.e. interspecific interactions). We thus analyzed potential competition/predation among and within ecological guilds. From the field data, we speculated that interactions within the sprawlers' guild is likely among the main drivers structuring the studied assemblages, especially the effect of intraguild predation between C. erythraea and Sympetrum spp larval stages. We then experimentally tested these interactions in laboratory and demonstrated that intraguild predation among larvae at different development stages may result in an effective exclusion/negative impact on density pattern, representing one of the processes to take into consideration when studying dragonfly assemblages

Cerini, F., Stellati, L., Vignoli, L., 2020. Segregation structure in Odonata assemblages follows the latitudinal gradient. Oecologia.
Abstract: Latitude is known to deeply affect life with effects generalizable into ecological rules; the increasing species diversity toward tropics is the most paradigmatic. Several hypotheses tested patterns of biotic interactions' intensity along latitude. Negative interactions (i.e. competition and predation) are expected to be among the processes that produce checkerboard distribution of species. However, no relationship between checkerboardness and latitude has been uncovered. We tested Odonata assemblages worldwide for segregation patterns using a faunistic dataset (395 species arranged in 386 natural communities) spanning a wide latitudinal range (87 degrees ). We used co-occurrence analyses (C-score index and Standardized Effect Size) as an estimate of checkerboardness then correlated the occurrence of segregation to latitude. Odonata followed the Latitudinal Diversity Gradient at the regional scale (i.e. country scale) within our analyzed assemblages spanning, whereas local richness (i.e. community scale) did not follow the same pattern. Odonata assemblages structured with segregation are more common going from high to low latitudes, and local species richness have no effect on the pattern. We summarized hypotheses on how biotic interactions or ecological and historical processes can influence the spatial patterns in the checkerboards of assemblages and presented promising ways to help to gain a better mechanistic understanding of the drivers of the Latitudinal Diversity Gradient

Chagas, T.Q., Araujo, A.P.D.C., Malafaia, G., 2020. Biomicroplastics versus conventional microplastics: An insight on the toxicity of these polymers in dragonfly larvae. Sci. Total Environ. 143231.
Abstract: The toxicological safety of products developed as alternative for conventional plastics (i.e., petroleum derivatives) inevitably demands conducting (eco)toxicological studies. Thus, the aim of the current study was to evaluate the biochemical toxicity of polyethylene microplastics (PE MPs) (representative of conventional MPs) and polylactic acid biomicroplastics (PLA BioMPs) in Aphylla williamsoni larvae used as experimental models. Animals subjected to short exposure to both pollutants (48 h), at environmentally relevant concentration (6 mg/L). At the end of the experiment, different toxicity biomarkers were evaluated. To assess the possible impact of pollutants on the nutritional status of the animals, the total protein, total soluble carbohydrate and triglyceride levels were determined. However, we did not observe differences between the groups, which suggests that PE MPs and PLA BioMPs did not affect the animals' energy metabolism, inducing them to a nutritional deficit. However, larvae exposed to PLA BioMPs have shown increased nitrite and lipid peroxidation levels, which supports the hypothesis that these pollutants increase oxidative stress processes in the animals evaluated, which can affect the animals' physiological homeostasis from different changes. In addition, the decrease in superoxide dismutase activity and of total thiols levels, in these same animals, is suggestive of the impact of PLA BioMPs on the antioxidant defenses, causing a REDOX imbalance, never before reported. On the other hand, decreased AChE activity was only observed in larvae exposed to PLA BioMPs, which demonstrates the anticholinergic activity of the tested polymers; the consequences of which include changes in different neurophysiological functions. Thus, the current study has helped improving the scientific knowledge about impacts caused by PLA BioMPs on freshwater ecosystems, as well as corroborated assertions about the risks posed by such biopolymers on these environments

Chauhan, P., Wellenreuther, M., Hansson, B., 2016. Transcriptome profiling in the damselfly Ischnura elegans identifies genes with sex-biased expression. BMC Genomics. 17, 985.
Abstract: BACKGROUND: Sexual dimorphism occurs widely across the animal kingdom and has profound effects on evolutionary trajectories. Here, we investigate sex-specific gene expression in Ischnura elegans (Odonata: dragonflies and damselflies), a species with pronounced sexual differences including a female-limited colour polymorphism with two female-like gynochrome morphs and one male-mimicking, androchrome morph. Whole-organism transcriptome profiling and sex-biased gene expression analysis was conducted on adults of both sexes (pooling all females as well as separating the three morphs) to gain insights into genes and pathways potentially associated with sexual development and sexual conflict. RESULTS: The de novo transcriptome assembly was of high quality and completeness (54 k transcripts; 99.6% CEGMA score; 55% annotated). We identified transcripts of several relevant pathways, including transcripts involved in sex determination, hormone biosynthesis, pigmentation and innate immune signalling. A total of 1,683 genes were differentially expressed (DE) between males and all females (1,173 were female-biased; 510 male-biased). The DE genes were associated with sex-specific physiological and reproductive processes, olfaction, pigmentation (ommochrome and melanin), hormone (ecdysone) biosynthesis and innate immunity signalling pathways. Comparisons between males and each female morph category showed that the gynochromes differed more from males than the androchrome morph. CONCLUSIONS: This is the first study to characterize sex-biased gene expression in odonates, one of the most ancient extant insect orders. Comparison between I. elegans sexes revealed expression differences in several genes related to sexual differences in behaviour and development as well as morphology. The differential expression of several olfactory genes suggests interesting sexual components in the detection of odours, pheromones and environmental volatiles. Up-regulation of pigmentation pathways in females indicates a prominent role of ommochrome pigments in the formation of the genetically controlled female colour polymorphism. Finally, the female-biased expression of several immunity genes suggests a stronger immune response in females, possibly related to the high levels of male mating harassment and recurrent matings in this species, both of which have been shown to injure females and expose them to sexually transmitted diseases and toxins contained in seminal fluids

Combes, S.A., Crall, J.D., Mukherjee, S., 2010. Dynamics of animal movement in an ecological context: dragonfly wing damage reduces flight performance and predation success. Biol. Lett. 6, 426-429.
Abstract: Much of our understanding of the control and dynamics of animal movement derives from controlled laboratory experiments. While many aspects of animal movement can be probed only in these settings, a more complete understanding of animal locomotion may be gained by linking experiments on relatively simple motions in the laboratory to studies of more complex behaviours in natural settings. To demonstrate the utility of this approach, we examined the effects of wing damage on dragonfly flight performance in both a laboratory drop-escape response and the more natural context of aerial predation. The laboratory experiment shows that hindwing area loss reduces vertical acceleration and average flight velocity, and the predation experiment demonstrates that this type of wing damage results in a significant decline in capture success. Taken together, these results suggest that wing damage may take a serious toll on wild dragonflies, potentially reducing both reproductive success and survival

Combes, S.A., Salcedo, M.K., Pandit, M.M., Iwasaki, J.M., 2013. Capture success and efficiency of dragonflies pursuing different types of prey. Integr. Comp Biol. 53, 787-798.
Abstract: The dynamics of predator-prey interactions vary enormously, due both to the heterogeneity of natural environments and to wide variability in the sensorimotor systems of predator and prey. In addition, most predators pursue a range of different types of prey, and most organisms are preyed upon by a variety of predators. We do not yet know whether predators employ a general kinematic and behavioral strategy, or whether they tailor their pursuits to each type of prey; nor do we know how widely prey differ in their survival strategies and sensorimotor capabilities. To gain insight into these questions, we compared aerial predation in 4 species of libelluid dragonflies pursuing 4 types of dipteran prey, spanning a range of sizes. We quantified the proportion of predation attempts that were successful (capture success), as well as the total time spent and the distance flown in pursuit of prey (capture efficiency). Our results show that dragonfly prey-capture success and efficiency both decrease with increasing size of prey, and that average prey velocity generally increases with size. However, it is not clear that the greater distances and times required for capturing larger prey are due solely to the flight performance (e.g., speed or evasiveness) of the prey, as predicted. Dragonflies initiated pursuits of large prey when they were located farther away, on average, as compared to small prey, and the total distance flown in pursuit was correlated with initial distance to the prey. The greater initial distances observed during pursuits of larger prey may arise from constraints on dragonflies' visual perception; dragonflies typically pursued prey subtending a visual angle of 1 degrees , and rarely pursued prey at visual angles greater than 3 degrees . Thus, dragonflies may be unable to perceive large prey flying very close to their perch (subtending a visual angle greater than 3-4 degrees ) as a distinct target. In comparing the performance of different dragonfly species that co-occur in the same habitat, we found significant differences that are not explained by body size, suggesting that some dragonflies may be specialized for pursuing particular types of prey. Our results underscore the importance of performing comparative studies of predator-prey interactions with freely behaving subjects in natural settings, to provide insight into how the behavior of both participants influences the dynamics of the interaction. In addition, it is clear that gaining a full understanding of predator-prey interactions requires detailed knowledge not only of locomotory mechanics and behavior, but also of the sensory capabilities and constraints of both predator and prey

Combes, S.A., 2015. Neuroscience: Dragonflies predict and plan their hunts. Nature 517, 279-280.

Cooper, I.A., Brown, J.M., Getty, T., 2016. A role for ecology in the evolution of colour variation and sexual dimorphism in Hawaiian damselflies. J. Evol. Biol. 29, 418-427.
Abstract: Variation in traits that are sexually dimorphic is usually attributed to sexual selection, in part because the influence of ecological differences between sexes can be difficult to identify. Sex-limited dimorphisms, however, provide an opportunity to test ecological selection disentangled from reproductive differences between the sexes. Here, we test the hypothesis that ecological differences play a role in the evolution of body colour variation within and between sexes in a radiation of endemic Hawaiian damselflies. We analysed 17 Megalagrion damselflies species in a phylogenetic linear regression, including three newly discovered cases of species with female-limited dimorphism. We find that rapid colour evolution during the radiation has resulted in no phylogenetic signal for most colour and habitat traits. However, a single ecological variable, exposure to solar radiation (as measured by canopy cover) significantly predicts body colour variation within sexes (female-limited dimorphism), between sexes (sexual dimorphism), and among populations and species. Surprisingly, the degree of sexual dimorphism in body colour is also positively correlated with the degree of habitat differences between sexes. Specifically, redder colouration is associated with more exposure to solar radiation, both within and between species. We discuss potential functions of the pigmentation, including antioxidant properties that would explain the association with light (specifically UV) exposure, and consider alternative mechanisms that may drive these patterns of sexual dimorphism and colour variation

Cordero-Rivera, A., 2016. Sperm removal during copulation confirmed in the oldest extant damselfly, Hemiphlebia mirabilis. PeerJ. 4, e2077.
Abstract: Postcopulatory sexual selection may favour mechanisms to reduce sperm competition, like physical sperm removal by males. To investigate the origin of sperm removal, I studied the reproductive behaviour and mechanisms of sperm competition in the only living member of the oldest damselfly family, Hemiphlebia mirabilis, one species that was considered extinct in the 1980s. This species displays scramble competition behaviour. Males search for females with short flights and both sexes exhibit a conspicuous "abdominal flicking". This behaviour is used by males during an elaborate precopulatory courtship, unique among Odonata. Females use a similar display to reject male attempts to form tandem, but eventually signal receptivity by a particular body position. Males immobilise females during courtship using their legs, which, contrarily to other damselflies, never autotomise. Copulation is short (range 4.1-18.7 min), and occurs in two sequential stages. In the first stage, males remove part of the stored sperm, and inseminate during the second stage, at the end of mating. The male genital ligula matches the size and form of female genitalia, and ends by two horns covered by back-oriented spines. The volume of sperm in females before copulation was 2.7 times larger than the volume stored in females whose copulation was interrupted at the end of stage I, indicative of a significant sperm removal. These results point out that sperm removal is an old character in the evolution of odonates, possibly dating back to the Permian

Cordero-Rivera A. 2017. Sexual conflict and the evolution of genitalia: male damselflies remove more sperm when mating with a heterospecific female. Sci Rep 7:7844.
Abstract: In Calopteryx damselflies, males remove rivals' sperm stored by the female, thereby reducing sperm competition. This behaviour may create a sexual conflict, because females could lose the sperm stored in the spermatheca, used for long-term storage. Comparative evidence suggested antagonistic coevolution between sexes, which might prompt the evolution of narrow spermathecal ducts, or longer spermathecae, hindering sperm removal. Calopteryx haemorrhoidalis and C. splendens coexist and sometimes hybridize. Therefore, here I predicted that if females coevolve with conspecific males, heterospecific males should have an advantage when interspecific matings occur because females will show less resistance to them than to conspecific males. By hand-pairing females to males of both species, I found that in intraspecific and interspecific matings, sperm was almost completely removed from the bursa (97-100%), but only partially from the spermathecae, with more spermathecal removal in interspecific (63-71%) than intraspecific matings (14-33%). This suggests that heterospecific males are more efficient in sperm removal as predicted by a sexually-antagonistic coevolutionary scenario. Furthermore, in most cases, only the left spermatheca was emptied, suggesting that the evolution of more than one spermatheca might also be a female counter-adaptation to regain control over fertilization

Cordoba-Aguilar, A., Munguia-Steyer, R., 2013. The sicker sex: understanding male biases in parasitic infection, resource allocation and fitness. PLoS. One. 8, e76246.
Abstract: The "sicker sex" idea summarizes our knowledge of sex biases in parasite burden and immune ability whereby males fare worse than females. The theoretical basis of this is that because males invest more on mating effort than females, the former pay the costs by having a weaker immune system and thus being more susceptible to parasites. Females, conversely, have a greater parental investment. Here we tested the following: a) whether both sexes differ in their ability to defend against parasites using a natural host-parasite system; b) the differences in resource allocation conflict between mating effort and parental investment traits between sexes; and, c) effect of parasitism on survival for both sexes. We used a number of insect damselfly species as study subjects. For (a), we quantified gregarine and mite parasites, and experimentally manipulated gregarine levels in both sexes during adult ontogeny. For (b), first, we manipulated food during adult ontogeny and recorded thoracic fat gain (a proxy of mating effort) and abdominal weight (a proxy of parental investment) in both sexes. Secondly for (b), we manipulated food and gregarine levels in both sexes when adults were about to become sexually mature, and recorded gregarine number. For (c), we infected male and female adults of different ages and measured their survival. Males consistently showed more parasites than females apparently due to an increased resource allocation to fat production in males. Conversely, females invested more on abdominal weight. These differences were independent of how much food/infecting parasites were provided. The cost of this was that males had more parasites and reduced survival than females. Our results provide a resource allocation mechanism for understanding sexual differences in parasite defense as well as survival consequences for each sex

Cordoba-Aguilar, A., Rocha-Ortega, M., 2019. Damselfly (Odonata: Calopterygidae) Population Decline in an Urbanizing Watershed. J. Insect. Sci. 19.
Abstract: Reduction of terrestrial vegetation and degradation of water quality are among the factors driving insect population decline in growing cities. In this study, we investigated the extent of habitat deterioration, behavioral and physiological responses, and fitness of a damselfly [Hetaerina americana (F.)] population in a semitropical region in central Mexico. The study population was located in a riverine area that crosses a small urban area (Tehuixtla city). We related two habitat variables (tree/shrub covered area and numbers of wastewater outlets) to presumable damselfly responses (larval and adult abundance, duration of adults exposed directly to sunlight, lipid content and muscle mass, and egg survival) over the years 2002 and 2016. We detected a reduction in terrestrial vegetation cover, an increase in wastewater outlets, and a decrease in larval and adult abundance. Adults were more exposed to sunlight in 2016 than in 2002 and showed a reduced lipid content and muscle mass in 2016. Egg survival also decreased. Although correlative, these results suggest impairment of damselfly condition (via lipid and muscle reduction) and fitness as urbanization increases

Cordoba-Aguilar, A., Contreras-Garduno, J., Peralta-Vazquez, H., Luna-Gonzalez, A., Campa-Cordova, A.I., Ascencio, F., 2006. Sexual comparisons in immune ability, survival and parasite intensity in two damselfly species. J. Insect Physiol 52, 861-869.
Abstract: Recent evolutionary studies have suggested that females have a more robust immune system than males. Using two damselfly species (Hetaerina americana and Argia tezpi), we tested if females produced higher immune responses (as phenoloxidase and hydrolytic enzymes), had a higher survival (using a nylon implant inserted in the abdomen and measuring survival after 24h) and fewer parasites (gregarines and water mites) than males. We also tested whether immune differences should emerge in different body areas (thorax vs. abdomen) within each sex with the prediction that only females will differ with the abdomen having a higher immune response than their thorax since the former area, for ecological and physiological reasons, may be a target zone for increased immune investment. Animals were adults of approximately the same age. In both species, females were more immunocompetent than males, but only in H. americana females were immune responses greater in the abdomen than in the thorax. However, there were no differences in survival and parasite intensity or the probability of being parasitised between the sexes in either of the two species. Thus, this study lends partial support to the principle that females are better at defending than males despite the null difference in parasitism and survival

Cordoba-Aguilar, A., San Miguel-Rodriguez, M., Rocha-Ortega, M., Lanz-Mendoza, H., Cime-Castillo, J., Benelli, G., 2021. Adult damselflies as possible regulators of mosquito populations in urban areas. Pest. Manag. Sci. 77, 4274-4287.

Abstract: BACKGROUND: Dragonfly and damselfly larvae have been considered as possible biocontrol agents against young instars of mosquito vectors in urban environments. Yet our knowledge about adult odonate predation against mosquito adults is scarce. We quantified daily and annual predation rates, consumption rates and prey preferences of adult Hetaerina vulnerata male damselflies in an urban park. A focus on predation of mosquito species was provided, quantified their arbovirus (dengue, chikungunya and Zika) infection rates and biting activity. RESULTS: Foraging times of H. vulnerata overlapped with those of the maximum activity of hematophagous mosquitoes. The most consumed preys were Diptera and Hymenoptera and, in lower quantities, Hemiptera, Coleoptera, Trichoptera, Psocoptera and Neuroptera. Of note, 7% of the diet was represented by hematophagous dipterans, with 2.4% being Aedes aegypti and Aedes albopictus. Prey abundance in the diet coincided with that of the same species in the environment. The arboviral infection rate (dengue, chikungunya and Zika) was 1.6% for A. aegypti and A. albopictus. The total biting rate of these mosquito vectors was 16 bites per person per day, while the annual rate of infectious bites was 93.4. CONCLUSION: Although 2.4% for both Aedes species seems a low consumption, considering the presence of 12 odonate species at the park, it can be argued that adult odonates may play a relevant role as mosquito vector regulators, therefore impacting the spread of mosquito-borne diseases. Our study outlines the need for further research on the topic of the possible role of adult odonates for mosquito biocontrol. (c) 2021 Society of Chemical Industry

Corser, J.D., White, E.L., Schlesinger, M.D., 2015. Adult activity and temperature preference drives region-wide damselfly (Zygoptera) distributions under a warming climate. Biol. Lett. 11, 20150001.

Abstract: We analysed a recently completed statewide odonate Atlas using multivariate linear models. Within a phylogenetically explicit framework, we developed a suite of data-derived traits to assess the mechanistic distributional drivers of 59 species of damselflies in New York State (NYS). We found that length of the flight season (adult breeding activity period) mediated by thermal preference drives regional distributions at broad (10(5) km(2)) scales. Species that had longer adult flight periods, in conjunction with longer growing seasons, had significantly wider distributions. These intrinsic traits shape species' responses to changing climates and the mechanisms behind such range shifts are fitness-based metapopulation processes that adjust phenology to the prevailing habitat and climate regime through a photoperiod filter

Craves, J.A., O'Brien, D.S., Marvin, D.A., 2020. New Population of the Rare Dragonfly Ophiogomphus howei (Odonata: Gomphidae) in Southern Michigan, United States. J. Insect Sci. 20.
Abstract: Ophiogomphus howei Bromley is a rare North American dragonfly, given a global conservation rank of Vulnerable by NatureServe. This species inhabits localized stretches of a limited number of typically undisturbed, high-quality, forested rivers in two disjunct regions in North America. We describe a new population in between the known ranges from an impaired river in a largely urban watershed in southern Michigan, United States. We also report a previously overlooked specimen from a new location in Pennsylvania, United States, and provide current occurrence and conservation status of the species in North America

Crowley, L. M., Price, B. W., Allan, E. L., & Eagles, M. (2023). The genome sequence of the Common Darter, Sympetrum striolatum (Charpentier, 1840). Wellcome. Open. Res. 8, 389, doi:10.12688/wellcomeopenres.19937.1 [doi].
Abstract: We present a genome assembly from an individual female Sympetrum striolatum (the Common Darter; Arthropoda; Insecta; Odonata; Libellulidae). The genome sequence is 1349.6 megabases in span. Most of the assembly is scaffolded into 12 chromosomal pseudomolecules, including the X sex chromosome. The mitochondrial genome has also been assembled and is 16.16 kilobases in length

Culler, L.E., McPeek, M.A., Ayres, M.P., 2014. Predation risk shapes thermal physiology of a predaceous damselfly. Oecologia. 176, 653-660.
Abstract: Predation risk has strong effects on organismal physiology that can cascade to impact ecosystem structure and function. Physiological processes in general are sensitive to temperature. Thus, the temperature at which predators and prey interact may shape physiological response to predation risk. We measured and evaluated how temperature and predation risk affected growth rates of predaceous damselfly nymphs (Enallagma vesperum, Odonata: Coenagrionidae). First, we conducted growth trials at five temperatures crossed with two levels of predation risk (fish predator present versus absent) and measured growth rates, consumption rates, assimilation efficiencies, and production efficiencies of 107 individual damselflies. Second, we used a model to evaluate if and how component physiological responses to predation risk affected growth rates across temperatures. In the absence of mortality threat, growth rates of damselflies increased with warming until about 23.5 degrees C and then began to decline, a typical unimodal response to changes in temperature. Under predation risk, growth rates were lower and the shape of the thermal response was less apparent. Higher metabolic and survival costs induced by predation risk were only partially offset by changes in consumption rates and assimilation efficiencies and the magnitude of non-consumptive effects varied as a function of temperature. Furthermore, we documented that thermal physiology was mediated by predation risk, a known driver of organismal physiology that occurs in the context of species interactions. A general understanding of climatic impacts on ectothermic populations requires consideration of the community context of thermal physiology, including non-consumptive effects of predators

Dalzochio, M.S., Perico, E., Dametto, N., Sahlen, G., 2020. Rapid functional traits turnover in boreal dragonfly communities (Odonata). Sci. Rep. 10, 15411.
Abstract: All natural populations show fluctuations in space or time. This is fundamental for the maintenance of biodiversity, as it allows species to coexist. Long-term ecological studies are rare, mainly due to logistics, but studies like the one presented below recognize the dimensionality of temporal change and the ecological processes that lead to shifts in community composition over time. Here, we used three sampling occasions from a dataset spanning 20 years where dragonflies in central Sweden were monitored. Our aim was to investigate how the prevalence of ecological and biological species traits varied over time measured as Community-level Weighted Means of trait values (CWM). Most CWM values varied significantly between years. Most of the traits changed between the second and the last sampling occasion, but not between the two first ones. These changes could be linked to major changes in species abundance. Our work indicates that fundamental shifts in community structure can occur over a short time, providing environmental drivers act on species turnover. In our case, Climate change and pH levels in lakes are most likely the most important factors

Daniel, K.W., Pattemore, D.E., Hagen, M., 2014. Challenges and prospects in the telemetry of insects. Biol. Rev. Camb. Philos. Soc. 89 , 511-530.
Abstract: Radio telemetry has been widely used to study the space use and movement behaviour of vertebrates, but transmitter sizes have only recently become small enough to allow tracking of insects under natural field conditions. Here, we review the available literature on insect telemetry using active (battery-powered) radio transmitters and compare this technology to harmonic radar and radio frequency identification (RFID) which use passive tags (i.e. without a battery). The first radio telemetry studies with insects were published in the late 1980s, and subsequent studies have addressed aspects of insect ecology, behaviour and evolution. Most insect telemetry studies have focused on habitat use and movement, including quantification of movement paths, home range sizes, habitat selection, and movement distances. Fewer studies have addressed foraging behaviour, activity patterns, migratory strategies, or evolutionary aspects. The majority of radio telemetry studies have been conducted outside the tropics, usually with beetles (Coleoptera) and crickets (Orthoptera), but bees (Hymenoptera), dobsonflies (Megaloptera), and dragonflies (Odonata) have also been radio-tracked. In contrast to the active transmitters used in radio telemetry, the much lower weight of harmonic radar and RFID tags allows them to be used with a broader range of insect taxa. However, the fixed detection zone of a stationary radar unit (< 1 km diameter) and the restricted detection distance of RFID tags (usually < 1-5 m) constitute major constraints of these technologies compared to radio telemetry. Most of the active transmitters in radio telemetry have been applied to insects with a body mass exceeding 1 g, but smaller species in the range 0.2-0.5 g (e.g. bumblebees and orchid bees) have now also been tracked. Current challenges of radio-tracking insects in the field are related to the constraints of a small transmitter, including short battery life (7-21 days), limited tracking range on the ground (100-500 m), and a transmitter weight that sometimes approaches the weight of a given insect (the ratio of tag mass to body mass varies from 2 to 100%). The attachment of radio transmitters may constrain insect behaviour and incur significant energetic costs, but few studies have addressed this in detail. Future radio telemetry studies should address (i) a larger number of species from different insect families and functional groups, (ii) a better coverage of tropical regions, (iii) intraspecific variability between sexes, ages, castes, and individuals, and (iv) a larger tracking range via aerial surveys with helicopters and aeroplanes equipped with external antennae. Furthermore, field and laboratory studies, including observational and experimental approaches as well as theoretical modelling, could help to clarify the behavioural and energetic consequences of transmitter attachment. Finally, the development of commercially available systems for automated tracking and potential future options of insect telemetry from space will provide exciting new avenues for quantifying movement and space use of insects from local to global spatial scales

Danko, M.J., Danko, A., Golab, M.J., Stoks, R., Sniegula, S., 2017. Latitudinal and age-specific patterns of larval mortality in the damselfly Lestes sponsa: Senescence before maturity? Exp. Gerontol. 95, 107-115.
Abstract: Latitudinal differences in life history traits driven by differences in seasonal time constraints have been widely documented. Yet, latitudinal patterns in (age-specific) mortality rates have been poorly studied. Here, we studied latitudinal differences in pre-adult age-specific mortality patterns in the strictly univoltine damselfly Lestes sponsa. We compared individuals from three latitudes reared from the egg stage in the laboratory at temperatures and photoperiods simulating those at the latitude of origin (main experiment) and under common-garden conditions at a fixed temperature and photoperiod (supplementary experiment). Results from the main experiment showed that the high-latitude population exhibited higher mortality rates than the central and southern populations, likely reflecting a cost of their faster development. Age-specific mortality patterns, also indicated higher ageing rates in the high-latitude compared to the low-latitude population, which likely had a genetic basis. The strong within-population variation in hatching dates in the low-latitude population caused variation in mortality rates; individuals that hatched later showed higher mortality rates presumably due to their shorter development times compared to larvae that hatched earlier. In both experiments, larvae from all three latitudes showed accelerated mortality rates with age, which is consistent with a pattern of senescence before adulthood.

da Silva, G.G., Poulin, R., Guillermo-Ferreira, R., 2021. Do latitudinal and bioclimatic gradients drive parasitism in Odonata? Int. J. Parasitol.
Abstract: Prevalence of parasites in wild animals may follow ecogeographic patterns, under the influence of climatic factors and macroecological features. One of the largest scale biological patterns on Earth is the latitudinal diversity gradient; however, latitudinal gradients may also exist regarding the frequency of interspecific interactions such as the prevalence of parasitism in host populations. Dragonflies and damselflies (order Odonata) are hosts of a wide range of ecto- and endoparasites, interactions that can be affected by environmental factors that shape their occurrence and distribution, such as climatic variation, ultraviolet radiation and vegetation structure. Here, we retrieved data from the literature on parasites of Odonata, represented by 90 populations infected by ectoparasites (water mites) and 117 populations infected by endoparasites (intestinal gregarines). To test whether there is a latitudinal and bioclimatic gradient in the prevalence of water mites and gregarines parasitizing Odonata, we applied Bayesian phylogenetic comparative models. We found that prevalence of ectoparasites was partially associated with latitude, showing the opposite pattern from our expectations - prevalence was reduced at lower latitudes. Prevalence of endoparasites was not affected by latitude. While prevalence of water mites was also positively associated with vegetation biomass and climatic stability, we found no evidence of the effect of bioclimatic variables on the prevalence of gregarines. Our study suggests that infection by ectoparasites of dragonflies and damselflies is driven by latitudinal and bioclimatic variables. We add evidence of the role of global-scale biological patterns in shaping biodiversity, suggesting that parasitic organisms may prove reliable sources of information about climate change and its impact on ecological interactions

David, F.J., Herzog, R., Bielke, A., Bergjurgen, N., Osigus, H.J., Hadrys, H., 2021. The first complete mitochondrial genome of the migratory dragonfly Pantala flavescens Fabricius, 1798 (Libellulidae: Odonata). Mitochondrial. DNA B Resour. 6, 808-810.
Abstract: Pantala flavescens is the world's most abundant and widely distributed dragonfly and with its outstanding migratory capacity an important model system to study insect migration at the evolutionary base of winged insects. We here report on the first complete mitochondrial genome (mitogenome) of P. flavescens sampled from a population in Rufiji River, Tanzania. The mitogenome is 14,853 bp long with an AT-biased base composition (72.7% A + T) and encodes a typical set of 13 protein-coding genes (PCGs), 22 tRNAs, and two rRNAs. The control region (CR) (171 bp) is the shortest reported in any anisopteran odonate, so far. Phylogenetic analyses support the placement of P. flavescens within the Libellulidae

Davidovich, H., Ribak, G., 2016. Flying with eight wings: inter-sex differences in wingbeat kinematics and aerodynamics during the copulatory flight of damselflies (Ischnura elegans). Naturwissenschaften. 103, 65.
Abstract: Copulation in the blue-tailed damselfly, Ischnura elegans, can last over 5 hours, during which the pair may fly from place to place in the so-called "wheel position". We filmed copulatory free-flight and analyzed the wingbeat kinematics of males and females in order to understand the contribution of the two sexes to this cooperative flight form. Both sexes flapped their wings but at different flapping frequencies resulting in a lack of synchronization between the flapping of the two insects. Despite their unusual body posture, females flapped their wings in a stroke-plane not significantly different to that of the males (repeated-measures ANOVA, F1,7 = 0.154, p = 0.71). However, their flapping amplitudes were smaller by 42 +/- 17 %, compared to their male mates (t test, t 7 = 9.298, p < 0.001). This was mostly due to shortening of the amplitude at the ventral stroke reversal point. Compared to solitary flight, males flying in copula increased flapping frequency by 19 %, while females decreased flapping amplitude by 27 %. These findings suggest that although both sexes contribute to copulatory flight, females reduce their effort, while males increase their aerodynamic output in order to carry both their own weight and some of the female's weight. This increased investment by the male is amplified due to male I. elegans being typically smaller than females. The need by smaller males to fly while carrying some of the weight of their larger mates may pose a constraint on the ability of mating pairs to evade predators or counter interference from competing solitary males

Deacon, C., Samways, M.J., 2021. A Review of the Impacts and Opportunities for African Urban Dragonflies. Insects. 12.
Abstract: Urban settlements range from small villages in rural areas to large metropoles with densely packed infrastructures. Urbanization presents many challenges to the maintenance of freshwater quality and conservation of freshwater biota, especially in Africa. There are many opportunities as well, particularly by fostering contributions from citizen scientists. We review the relationships between dragonflies and urbanization in southern Africa. Shifts in dragonfly assemblages indicate environmental change, as different species are variously sensitive to abiotic and biotic water and bank conditions. They are also conservation umbrellas for many other co-occurring species. Major threats to southern African dragonflies include increasing infrastructure densification, frequent droughts, habitat loss, pollution, and invasive alien vegetation. Mitigation measures include implementation of conservation corridors, maintenance of healthy permanent ponds, pollution reduction, and removal of invasive alien trees. Citizen science is now an important approach for supplementing and supporting professional scientific research

de Beeck LO, Verheyen J, Stoks R. 2017. Strong differences between two congeneric species in sensitivity to pesticides in a warming world. Sci Total Environ 618:60-69.
Abstract: To predict the impact of pesticides in a warming world we need to know how species differ in the interaction pathways between pesticides and warming. Trait-based approaches have been successful in identifying the 'pace of life' and body size as predictors of sensitivity to pesticides among distantly related species. However, it remains to be tested whether these traits allow predicting differences in sensitivity to pesticides between closely related species, and in the strength of the interaction pathways between pesticides and warming. We tested the effects of multiple pulses of chlorpyrifos (allowing accumulation) under warming on key life history traits, heat tolerance (CTmax) and physiology of two congeneric damselfly species: the fast-paced (fast growth and development, high metabolic rate), small Ischnura pumilio and the slow-paced, large I. elegans. Chlorpyrifos reduced survival and growth, but contrary to current trait-based predictions I. pumilio was 8x less sensitive than I. elegans. The lower sensitivity of I. pumilio could be explained by a higher fat content, and higher activities of acetylcholinesterase and of detoxifying and anti-oxidant enzymes. While for I. pumilio the effect of chlorpyrifos was small and did not depend on temperature, for I. elegans the impact was higher at 20 degrees C compared to 24 degrees C. This matches the higher pesticide accumulation in the water after multiple pulses at 20 degrees C than at 24 degrees C. The expected reduction in heat tolerance after pesticide exposure was present in I. elegans but not in I. pumilio. Our results demonstrate that closely related species can have very different sensitivities to a pesticide resulting in species-specific support for the "toxicant-induced climate change sensitivity" and the "climate-induced toxicant sensitivity" interaction pathways. Our results highlight that trait-based approaches can be strengthened by integrating physiological traits

Deb, R., Nair, A., Agashe, D., 2019. Host dietary specialization and neutral assembly shape gut bacterial communities of wild dragonflies. PeerJ. 7, e8058.
Abstract: Host-associated gut microbiota can have significant impacts on host ecology and evolution and are often host-specific. Multiple factors can contribute to such host-specificity: (1) host dietary specialization passively determining microbial colonization, (2) hosts selecting for specific diet-acquired microbiota, or (3) a combination of both. The latter possibilities indicate a functional association and should produce stable microbiota. We tested these alternatives by analyzing the gut bacterial communities of six species of wild adult dragonfly populations collected across several geographic locations. The bacterial community composition was predominantly explained by sampling location, and only secondarily by host identity. To distinguish the role of host dietary specialization and host-imposed selection, we identified prey in the guts of three dragonfly species. Surprisingly, the dragonflies-considered to be generalist predators-consumed distinct prey; and the prey diversity was strongly correlated with the gut bacterial profile. Such host dietary specialization and spatial variation in bacterial communities suggested passive rather than selective underlying processes. Indeed, the abundance and distribution of 72% of bacterial taxa were consistent with neutral community assembly; and fluorescent in situ hybridization revealed that bacteria only rarely colonized the gut lining. Our results contradict the expectation that host-imposed selection shapes the gut microbiota of most insects, and highlight the importance of joint analyses of diet and gut microbiota of natural host populations

Dickinson, M.H., 2015. Motor control: how dragonflies catch their prey. Curr. Biol. 25, R232-R234.
Abstract: Detailed measurements of head and body motion have revealed previously unknown complexity in the predatory behavior of dragonflies. The new evidence suggests that the brains of these agile predators compute internal models of their own actions and those of their prey

Dinh, K.V., Janssens, L., Therry, L., Gyulavari, H.A., Bervoets, L., Stoks, R., 2016. Rapid evolution of increased vulnerability to an insecticide at the expansion front in a poleward-moving damselfly. Evol. Appl. 9, 450-461.
Abstract: Many species are too slow to track their poleward-moving climate niche under global warming. Pesticide exposure may contribute to this by reducing population growth and impairing flight ability. Moreover, edge populations at the moving range front may be more vulnerable to pesticides because of the rapid evolution of traits to enhance their rate of spread that shunt energy away from detoxification and repair. We exposed replicated edge and core populations of the poleward-moving damselfly Coenagrion scitulum to the pesticide esfenvalerate at low and high densities. Exposure to esfenvalerate had strong negative effects on survival, growth rate, and development time in the larval stage and negatively affected flight-related adult traits (mass at emergence, flight muscle mass, and fat content) across metamorphosis. Pesticide effects did not differ between edge and core populations, except that at the high concentration the pesticide-induced mortality was 17% stronger in edge populations. Pesticide exposure may therefore slow down the range expansion by lowering population growth rates, especially because edge populations suffered a higher mortality, and by negatively affecting dispersal ability by impairing flight-related traits. These results emphasize the need for direct conservation efforts toward leading-edge populations for facilitating future range shifts under global warming

Docile, T.N., Figueiro, R., Portela, C., Nessimian, J.L., 2016. Macroinvertebrate diversity loss in urban streams from tropical forests. Environ. Monit. Assess. 188, 237.
Abstract: The increase of human activities in recent years has significantly interfered and affected aquatic ecosystems. In this present study, we investigate the effects of urbanization in the community structure of aquatic macroinvertebrates from Atlantic Forest streams. The sampling was conducted in the mountainous region of the State of Rio de Janeiro, Brazil in 10 urban and 10 preserved streams during the dry season (August-September) of 2012. The streams were characterized for its environmental integrity conditions and physico-chemical properties of water. The macroinvertebrates were sampled on rocky substrates with a kicknet. A total of 5370 individuals were collected from all streams and were distributed among Ephemeroptera, Odonata, Plecoptera, Hemiptera, Megaloptera, Coleoptera, Trichoptera, Lepidoptera, and Diptera. In urban sites, all those orders were found, except Megaloptera, while only Mollusca was not found in preserved streams. We performed a non-metric multidimensional scaling (NMDS) analysis that separated two groups distributed among sites in urban communities and another group outside this area. The dominance was significantly higher at urban sites, while the alpha diversity and equitability were greater in preserved sites. A canonical correspondence analysis (CCA) was also performed, indicating that most taxa associated with high values of the Habitat Integrity Index (HII) and a few genus of the order Diptera with the high values of ammonia, total nitrogen, associated to streams in urban sites. Urban and preserved streams differ by physical-chemical variables and aquatic macroinvertebrates. In urban streams, there is most dominance, while alpha diversity and equitability are higher in preserved streams

Doi, H., 2008. Delayed phenological timing of dragonfly emergence in Japan over five decades. Biol. Lett. 4, 388-391.
Abstract: Recent increases in air temperature have affected species phenology, resulting in the earlier onset of spring life-cycle events. Trends in the first appearance of adult dragonflies across Japan were analysed using a dataset consisting of observations from 1953 to 2005. Dynamic factor analysis was used to evaluate underlying common trends in a set of 48 time series. The appearance of the first adult dragonfly has significantly shifted to later in the spring in the past five decades. Generalized linear mixing models suggested that this is probably the result of increased air temperatures. Increased summer and autumn temperatures may provide longer bivoltine periods and a faster growth rate; thus, the second generation, which previously hatched in summer, can emerge in the autumn causing the size of the population of dragonflies that emerge in spring to decrease. It is also possible that reduced dragonfly populations along with human development are responsible for a delay in the first observed dragonflies in the spring. However, human population density did not appear to strongly affect the appearance date. This study provides the first evidence of a delay in insect phenological events over recent decades

Dolny, A., Harabis, F., Mizicova, H., 2014. Home range, movement, and distribution patterns of the threatened dragonfly Sympetrum depressiusculum (Odonata: Libellulidae): a thousand times greater territory to protect? PLoS. One. 9, e100408.
Abstract: Dragonflies are good indicators of environmental health and biodiversity. Most studies addressing dragonfly ecology have focused on the importance of aquatic habitats, while the value of surrounding terrestrial habitats has often been overlooked. However, species associated with temporary aquatic habitats must persist in terrestrial environments for long periods. Little is known about the importance of terrestrial habitat patches for dragonflies, or about other factors that initiate or influence dispersal behaviour. The aim of this study was to reveal the relationship between population dynamics of the threatened dragonfly species Sympetrum depressiusculum at its natal site and its dispersal behaviour or routine movements within its terrestrial home range. We used a mark-release-recapture method (marking 2,881 adults) and exuviae collection with the Jolly-Seber model and generalized linear models to analyse seasonal and spatial patterns of routine movement in a heterogeneous Central European landscape. Our results show that utilisation of terrestrial habitat patches by adult dragonflies is not random and may be relatively long term (approximately 3 mo). Adult dragonflies were present only in areas with dense vegetation that provided sufficient resources; the insects were absent from active agricultural patches (p = 0.019). These findings demonstrate that even a species tightly linked to its natal site utilises an area that is several orders of magnitude larger than the natal site. Therefore, negative trends in the occurrence of various dragonfly species may be associated not only with disturbances to their aquatic habitats, but also with changes in the surrounding terrestrial landscape

Dolny, A., Ozana, S., Burda, M., Harabis, F., 2021. Effects of Landscape Patterns and Their Changes to Species Richness, Species Composition, and the Conservation Value of Odonates (Insecta). Insects. 12.
Abstract: Understanding the impact of the changing proportion of land-use patterns on species diversity is a critical issue in conservation biology, and odonates are good bioindicators of these environmental changes. Some freshwater ecosystems that have been modified due to human activities can serve as important secondary habitats for odonate assemblages; however, the majority of studies addressing the value of secondary habitats in industrial and urban areas for adult dragonfly diversity have been limited to the local scale, and the value of such habitats for gamma diversity is still unclear. The aim of this study was to determine the relationship between human transformations of land use/land cover and dragonfly diversity. We interpolated the information based on dragonfly occurrence per grid cell and land cover data, indicating naturalness and degradation in 677 grid cells in the Czech Republic. Species richness did not correspond to habitat naturalness, but the occurrence of endangered species was significantly positively correlated with increasing naturalness; thus, habitat degradation and/or the level of naturalness significantly affected species composition, while species richness remained unchanged. Threatened species that occur predominantly in natural areas and threatened species with a dominant occurrence in degraded squares were also separated, which indicated that the conservation of the latter should be prioritised

Drury, J.P., Anderson, C.N., Grether, G.F., 2015. Seasonal polyphenism in wing coloration affects species recognition in rubyspot damselflies (Hetaerina spp.). J. Evol. Biol. 28, 1439-1452.
Abstract: Understanding how phenotypic plasticity evolves and in turn affects the course of evolution is a major challenge in modern biology. By definition, biological species are reproductively isolated, but many animals fail to distinguish between conspecifics and closely related heterospecifics. In some cases, phenotypic plasticity may interfere with species recognition. Here, we document a seasonal polyphenism in the degree of dark wing pigmentation in smoky rubyspot damselflies (Hetaerina titia) - a shift so pronounced that it led early researchers to classify different forms of H. titia as separate species. We further show how the seasonal colour shift impacts species recognition with the sympatric congener Hetaerina occisa. Interspecific aggression (territorial fights) and reproductive interference (mating attempts) are much more frequent early in the year, when H. titia more closely resembles H. occisa, compared to later in the year when the dark phase of H. titia predominates. Using wing colour manipulations of tethered damselflies, we show that the seasonal changes in interspecific interactions are caused not only by the seasonal colour shift but also by shifts in discriminatory behaviour in both species. We also experimentally tested and rejected the hypothesis that learning underlies the behavioural shifts in H. occisa. An alternative hypothesis, which remains to be tested, is that the seasonal polyphenism in H. titia wing coloration has resulted in the evolution of a corresponding seasonal polyphenism in species recognition in H. occisa. This study illustrates one of the many possible ways that plasticity in species recognition cues may influence the evolution of interspecific interactions

Dudaniec,R.Y., C.J.Yong, L.T.Lancaster, E.I.Svensson, and B.Hansson. 2018. Signatures of local adaptation along environmental gradients in a range-expanding damselfly (Ischnura elegans). In press, Mol. Ecol.
Abstract: Insect distributions are shifting rapidly in response to climate change and are undergoing rapid evolutionary change. We investigate the molecular signatures underlying local adaptation in the range-expanding damselfly, Ischnura elegans. Using a landscape genomic approach combined with generalized dissimilarity modelling (GDM), we detect selection signatures on loci via allelic frequency change along environmental gradients. We analyse 13,612 Single Nucleotide Polymorphisms (SNPs), derived from Restriction site-Associated DNA sequencing (RADseq), in 426 individuals from 25 sites spanning the I. elegans distribution in Sweden, including its expanding northern range edge. Environmental association analysis (EAA) and the magnitude of allele frequency change along the range expansion gradient revealed significant signatures of selection in relation to high maximum summer temperature, high mean annual precipitation, and low wind speeds at the range edge. SNP annotations with significant signatures of selection revealed gene functions associated with ongoing range expansion, including heat shock proteins (HSP40 and HSP70), ion transport (V-ATPase) and visual processes (long wavelength-sensitive opsin), which have implications for thermal stress response, salinity tolerance and mate discrimination, respectively. We also identified environmental thresholds where climate-mediated selection is likely to be strong, and indicate that I. elegans is rapidly adapting to the climatic environment during its ongoing range expansion. Our findings empirically validate an integrative approach for detecting spatially explicit signatures of local adaptation along environmental gradients. 

Dudaniec, R.Y., Carey, A.R., Svensson, E.I., Hansson, B., Yong, C.J., Lancaster, L.T., 2021. Latitudinal clines in sexual selection, sexual size dimorphism, and sex-specific genetic dispersal during a poleward range expansion. J. Anim Ecol.
Abstract: 1. Range expansions can be shaped by sex differences in behaviours and other phenotypic traits affecting dispersal and reproduction. 2. Here, we investigate sex differences in morphology, behaviour and genomic population differentiation along a climate-mediated range expansion in the common bluetail damselfly (Ischnura elegans) in northern Europe. 3. We sampled 65 sites along a 583 km gradient spanning the I. elegans range in Sweden and quantified latitudinal gradients in site relative abundance, sex ratio and sex-specific shifts in body size and mating status (a measure of sexual selection). Using single nucleotide polymorphism (SNP) data for 426 individuals from 25 sites, we further investigated sex-specific landscape and climatic effects on neutral genetic connectivity and migration patterns. 4. We found evidence for sex differences associated with the I. elegans range expansion, namely (1) increased male body size with latitude, but no latitudinal effect on female body size, resulting in reduced sexual dimorphism towards the range limit, (2) a steeper decline in male genetic similarity with increasing geographic distance than in females, (3) male-biased genetic migration propensity, and (4) a latitudinal cline in migration distance (increasing migratory distances towards the range margin), which was stronger in males. Cooler mean annual temperatures towards the range limit were associated with increased resistance to gene flow in both sexes. Sex ratios became increasingly male-biased towards the range limit, and there was evidence for a changed sexual selection regime shifting from favouring larger males in the south, to favouring smaller males in the north. 5. Our findings suggest sex-specific spatial phenotype sorting at the range limit, where larger males disperse more under higher landscape resistance associated with cooler climates. The combination of latitudinal gradients in sex-biased dispersal, increasing male body size, and (reduced) sexual size dimorphism should have emergent consequences for sexual selection dynamics and the mating system at the expanding range front. Our study illustrates the importance of considering sex differences in the study of range expansions driven by ongoing climate change

Duong, T.M., McCauley, S.J., 2016. Predation risk increases immune response in a larval dragonfly (Leucorrhinia intacta). Ecology 97, 1605-1610.

Abstract: Predators often negatively affect prey performance through indirect, non-consumptive effects. We investigated the potential relationship between predator-induced stress and prey immune response. To test this, we administered a synthetic immune challenge into dragonfly larvae (Leucorrhinia intacta) and assessed a key immune response (level of encapsulation) in the presence and absence of a caged predator (Anax junius) at two temperatures (22 degrees C and 26 degrees C). We hypothesized that immune response would be lowered when predators were present due to lowered allocation of resources to immune function and leading to reduced encapsulation of the synthetic immune challenge. Contrary to our expectations, larvae exposed to caged predators had encapsulated monofilaments significantly more than larvae not exposed to caged predators. Levels of encapsulation did not differ across temperatures, nor interact with predator exposure. Our results suggest that the previously observed increase in mortality of L. intacta exposed to caged predators is not driven by immune suppression. In situations of increased predation risk, the exposure to predator cues may induce higher levels of melanin production, which could lead to physiological damage and high energetic costs. However, the costs and risks of increased allocations to immune responses and interactions with predation stress remain unknown

Duong TM, Gomez AB, Sherratt TN. 2017. Response of adult dragonflies to artificial prey of different size and colour. PLoS One 12:e0179483.
Abstract: Aposematism is an evolved, cross-species association between a preys' unprofitability and the presence of conspicuous signals. Avian predators have been widely employed to understand the evolution of these warning signals However, insect predators are abundant, diverse, and highly visual foragers that have been shown to be capable of learned aversion. Therefore, it is likely that their behaviour also shapes the nature of anti-predator traits. In this study, we evaluated the rates of attack of a community (13 species) of mature adult dragonflies (Odonata) on artificial prey of varying size (2.5-31 mm lengthwise) and colour pattern (black, black/yellow striped). The relative attack rates of dragonflies on prey increased as prey size decreased, but there was no evidence that the attack rates by dragonflies were affected by prey colour pattern and no evidence for an interaction between colour pattern and size. To investigate prey selection by specific predator species under field conditions, we compared the time to attack distributions of black-painted prey presented to two common dragonflies: Leucorrhinia intacta and the larger, Libellula pulchella. We found that the two dragonfly species, as well as the two sexes, had different foraging responses. L. pulchella was more likely to attack larger prey, and females of both species more likely to attack prey than males. Collectively, our results indicate that dragonflies are highly size selective. However, while the nature of this selectivity varies among dragonfly species, there is little evidence that classic black/yellow warning signals deter attack by these aerial invertebrate predators

Edgehouse, M., Brown, C.P., 2014. Predatory luring behavior of odonates. J. Insect Sci. 14, 146.
Abstract: Organisms in the order Odonata are highly predatory insects that have a wide distribution globally. To date, there has been zero evidence that odonates employ luring as a means of prey acquisition. However, in this study, we show that Aeshna palmata larvae use abdominal movements to lure larval Argia vivida, subsequently consuming the lured organism. We also present findings of a similar behavior from larval Ar. vivida in an attempt to lure larval A. palmata within striking distan

Ellenrieder NV, Garrison RW. 2017. A synopsis of the Neotropical genus Protoneura (Odonata: Coenagrionidae). Zootaxa 4361:1-76.
Abstract: A synopsis of the Neotropical genus Protoneura is presented, including an identification key to its 22 species accompanied by illustrations of diagnostic characters, and characterizations, diagnoses, and distribution maps for all species. A lectotype is designated for P. peramans Calvert in Skinner, 1902

Evans, B.J.E., O'Carroll, D.C., Fabian, J.M., Wiederman, S.D., 2022. Dragonfly Neurons Selectively Attend to Targets Within Natural Scenes. Front Cell Neurosci. 16, 857071.
Abstract: Aerial predators, such as the dragonfly, determine the position and movement of their prey even when both are moving through complex, natural scenes. This task is likely supported by a group of neurons in the optic lobe which respond to moving targets that subtend less than a few degrees. These Small Target Motion Detector (STMD) neurons are tuned to both target size and velocity, whilst also exhibiting facilitated responses to targets traveling along continuous trajectories. When presented with a pair of targets, some STMDs generate spiking activity that represent a competitive selection of one target, as if the alternative does not exist (i.e., selective attention). Here, we describe intracellular responses of CSTMD1 (an identified STMD) to the visual presentation of targets embedded within cluttered, natural scenes. We examine CSTMD1 response changes to target contrast, as well as a range of target and background velocities. We find that background motion affects CSTMD1 responses via the competitive selection between features within the natural scene. Here, robust discrimination of our artificially embedded "target" is limited to scenarios when its velocity is matched to, or greater than, the background velocity. Additionally, the background's direction of motion affects discriminability, though not in the manner observed in STMDs of other flying insects. Our results highlight that CSTMD1's competitive responses are to those features best matched to the neuron's underlying spatiotemporal tuning, whether from the embedded target or other features in the background clutter. In many scenarios, CSTMD1 responds robustly to targets moving through cluttered scenes. However, whether this neuronal system could underlie the task of competitively selecting slow moving prey against fast-moving backgrounds remains an open question

Feindt,W., S.J.Oppenheim, R.DeSalle, P.Z.Goldstein, and H.Hadrys. 2018. Transcriptome profiling with focus on potential key genes for wing development and evolution in Megaloprepus caerulatus, the damselfly species with the world's largest wings. PLoS.One. 13:e0189898.
Abstract: The evolution, development and coloration of insect wings remains a puzzling subject in evolutionary research. In basal flying insects such as Odonata, genomic research regarding bauplan evolution is still rare. Here we focus on the world's largest odonate species-the "forest giant" Megaloprepus caerulatus, to explore its potential for looking deeper into the development and evolution of wings. A recently discovered cryptic species complex in this genus previously considered monotypic is characterized by morphological differences in wing shape and color patterns. As a first step toward understanding wing pattern divergence and pathways involved in adaptation and speciation at the genomic level, we present a transcriptome profiling of M. caerulatus using RNA-Seq and compare these data with two other odonate species. The de novo transcriptome assembly consists of 61,560 high quality transcripts and is approximately 93% complete. For almost 75% of the identified transcripts a possible function could be assigned: 48,104 transcripts had a hit to an InterPro protein family or domain, and 28,653 were mapped to a Gene Ontology term. In particular, we focused on genes related to wing development and coloration. The comparison with two other species revealed larva-specific genes and a conserved 'core' set of over 8,000 genes forming orthologous clusters with Ischnura elegans and Ladona fulva. This transcriptome may provide a first point of reference for future research in odonates addressing questions surrounding the evolution of wing development, wing coloration and their role in speciation

Fekete, J., De, K. G., Dinis, M., Padisak, J., Boda, P., Mizsei, E., & Varbiro, G. (2023). Winners and Losers: Cordulegaster Species under the Pressure of Climate Change. Insects. 14, doi:insects14040348 [pii];insects-14-00348 [pii];10.3390/insects14040348 [doi].
Abstract: (1) Bioclimatic factors have a proven effect on species distributions in terrestrial, marine, or freshwater ecosystems. Because of anthropogenic effects, the changes in these variables are accelerated; thus, the knowledge of the impact has great importance from a conservation point of view. Two endemic dragonflies, the Balkan Goldenring (Cordulegaster heros) and the Two-Toothed Goldenring (C. bidentata), confined to the hilly and mountainous regions in Europe, are classified as "Near Threatened" according to the IUCN Red List. (2) Modeling the potential occurrence of both species under present and future climatic conditions provides a more accurate picture of the most suitable areas. The models were used to predict the responses of both species to 6 different climate scenarios for the year 2070. (3) We revealed which climatic and abiotic variables affect them the most and which areas are the most suitable for the species. We calculated how future climatic changes would affect the range of suitable areas for the two species. (4) According to our results, the suitable area for Cordulegaster bidentata and C. heros are strongly influenced by bioclimatic variables and showed an upward shift toward high elevations. The models predict a loss of suitable area in the case of C. bidentata and a large gain in the case of C. heros

Fincke, O.M., 2015. Trade-offs in female signal apparency to males offer alternative anti-harassment strategies for colour polymorphic females. J. Evol. Biol. 28, 931-943.
Abstract: Colour polymorphisms are known to influence receiver behaviour, but how they affect a receiver's ability to detect and recognize individuals in nature is usually unknown. I hypothesized that polymorphic female damselflies represent an evolutionary stable strategy, maintained by trade-offs between the relative apparency of morphs to male receivers. Using field experiments on Enallagma hageni and focal studies of E. hageni and Enallagma boreale, I tested for the first time the predictions that (i) green heteromorphs and blue andromorphs gain differential protection from sexual harassment via background crypsis and sexual mimicry, respectively, and (ii) female morphs behaviourally optimize their signal apparency to mate-searching males. First, based on male reactions elicited by females, against a high-contrast background, the two morphs did not differ in being detected by males, and once detected, they did not differ in being recognized (eliciting sexual reactions). However, on green ferns, heteromorphs were less likely to be detected (elicited only fly-bys) than andromorphs, but once detected, the morphs did not differ in being recognized. In contrast, when perched on a dowel with two male signal distractors, andromorphs were detected less often, and once detected, they were recognized less often than heteromorphs. Second, in fields where females foraged, andromorphs perched higher on vegetation than heteromorphs and were more often in the vicinity of males. Neither harassment rates nor evasive behaviours differed between morphs. Males aggregated in high density near shore where solitary females were rare. Equilibrium frequencies of these and other colour morphs should reflect the relative ease with which receivers detect and recognize them in the context where they are encountered

Fincke,O.M., S.P.Yanoviak, and R.D.Hanschu. 1997. Predation by odonates depresses mosquito abundance in water-filled tree holes in Panama. Oecologia. 112:244-253.
Abstract: In the lowland moist forest of Barro Colorado Island (BCI), Panama, larvae of four common species of odonates, a mosquito, and a tadpole are the major predators in water-filled tree holes. Mosquito larvae are their most common prey. Holes colonized naturally by predators and prey had lower densities of mosquitoes if odonates were present than if they were absent. Using artificial tree holes placed in the field, we tested the effects of odonates on their mosquito prey while controlling for the quantity and species of predator, hole volume, and nutrient input. In large and small holes with low nutrient input, odonates depressed the number of mosquitoes present and the number that survived to pupation. Increasing nutrient input (and consequently, mosquito abundance) to abnormally high levels dampened the effect of predation when odonates were relatively small. However, the predators grew faster with higher nutrients, and large larvae in all three genera reduced the number of mosquitoes surviving to pupation, even though the abundance of mosquito larvae remained high. Size-selective predation by the odonates is a likely explanation for this result; large mosquito larvae were less abundant in the predator treatment than in the controls. Because species assemblages were similar between natural and artificial tree holes, our results suggest that odonates are keystone species in tree holes on BCI, where they are the most common large predators

Fitt, R.N., Lancaster, L.T., 2017. Range shifting species reduce phylogenetic diversity in high latitude communities via competition. J. Anim Ecol. 86, 543-555.
Abstract: Under anthropogenic climate change, many species are expanding their ranges to higher latitudes and altitudes, resulting in novel species interactions. The consequences of these range shifts for native species, patterns of local biodiversity and community structure in high latitude ecosystems are largely unknown but critical to understand in light of widespread poleward expansions by many warm-adapted generalists. Using niche modelling, phylogenetic methods, and field and laboratory studies, we investigated how colonization of Scotland by a range expanding damselfly, Ischnura elegans, influences patterns of competition and niche shifts in native damselfly species, and changes in phylogenetic community structure. Colonization by I. elegans was associated with reduced population density and niche shifts in the resident species least related to I. elegans (Lestes sponsa), reflecting enhanced competition. Furthermore, communities colonized by I. elegans exhibited phylogenetic underdispersion, reflecting patterns of relatedness and competition. Our results provide a novel example of a potentially general mechanism whereby climate change-mediated range shifts can reduce phylogenetic diversity within high latitude communities, if colonizing species are typically competitively superior to members of native communities that are least-closely related to the colonizer.

Fitzstephens, D.M., Getty, T., 2000. Colour, fat and social status in male damselflies, Calopteryx maculata. Anim Behav. 60, 851-855.
Abstract: In the black-winged damselfly, Calopteryx maculata, younger males challenge and displace older males from mating territories. Fatter males tend to win fights. These fights were initially interpreted as wars of attrition based on fat reserves, but the distributions of fat at the end of fights suggests at least some assessment of the opponent's condition. Alternatively, new models have been developed that show how the observed pattern could result without assessment. We show that there is a subtle but reliable cue to fat reserves: colour. Females are a relatively drab brown-black. Males are a strikingly iridescent blue-green colour, resulting from a multilayer constructive interference reflector system in the epicuticle. In fatter males the lamellae are more compressed and the peak reflectance is at shorter wavelengths (blue). Leaner, greener males have greater spacing between lamellae and reflect longer wavelengths. The peak reflectance is as predicted from transmission electron micrograph measurements of the lamellar spacing. The rate of change in spacing over time can be manipulated experimentally by manipulating the diet. Individuals on a higher food diet remained blue longer and at the end of the experiment were fatter and bluer. In our studies, colour is a better predictor of territorial status than fat. Copyright 2000 The Association for the Study of Animal Behaviour

Franke, S., Pinkert, S., Brandl, R., Thorn, S., 2022. Modeling the extinction risk of European butterflies and odonates. Ecol. Evol. 12, e9465.
Abstract: Insect populations have become increasingly threatened during the last decades due to climate change and landuse intensification. Species characteristics driving these threats remain poorly understood. Trait-based analyses provide a straight-forward approach to gain a mechanistic understanding of species' extinction risk, guiding the development of conservation strategies. We combined morphological traits and phylogenetic relationship for 332 European species of butterflies and 115 species of odonates (dragon and damselflies) to model their red list status via phylogenetically controlled ordered logistic regression. We hypothesized that extinction risk increases with increasing body volume and wing area, decreasing range size, and is larger for brighter species. All investigated traits exhibited a strong phylogenetic signal. When controlling for phylogenetic relationship, we found that extinction risk of butterflies increased with decreasing range size. The extinction risk of odonates showed no relationship with the selected traits. Our results show that there is no universal trait defining the extinction risk of our investigated insect taxa. Furthermore, evolutionary history, measured as the phylogenetically predicted part of our analyzed traits, poorly predicted extinction risk. Our study confirms the focus of conservation measures on European butterfly species with small range sizes

Frati, F., Piersanti, S., Conti, E., Rebora, M., Salerno, G., 2015. Scent of a dragonfly: sex recognition in a polymorphic Coenagrionid. PLoS. One. 10, e0136697.

Abstract: In polymorphic damselflies discrimination of females from males is complex owing to the presence of androchrome and gynochrome females. To date there is no evidence that damselflies use sensory modalities other than vision (and tactile stimuli) in mate searching and sex recognition. The results of the present behavioural and electrophysiological investigations on Ischnura elegans, a polymorphic damselfly, support our hypothesis that chemical cues could be involved in Odonata sex recognition. The bioassays demonstrate that males in laboratory prefer female to male odour, while no significant difference was present in male behavior between stimuli from males and control. The bioassays suggest also some ability of males to distinguish between the two female morphs using chemical stimuli. The ability of male antennae to perceive odours from females has been confirmed by electrophysiological recordings. These findings are important not only to get insight into the chemical ecology of Odonata, and to shed light into the problem of olfaction in Paleoptera, but could be useful to clarify the controversial aspects of the mating behavior of polymorphic coenagrionids. Behavioural studies in the field are necessary to investigate further these aspects

Frati, F., Piersanti, S., Rebora, M., Salerno, G., 2016. Volatile cues can drive the oviposition behavior in Odonata. J. Insect. Physiol 91-92, 34-38.
Abstract: Selection for the oviposition site represents the criterion for the behavioral process of habitat selection for the next generation. It is well known that in Odonata the most general cues are detected visually, but laboratory investigations on the coenagrionid Ischnura elegans showed through behavioral and electrophysiological assays that adults were attracted by olfactory cues emitted by prey and that males of the same species are attracted by female odor. The results of the present behavioral and electrophysiological investigations on I. elegans suggest the involvement of antennal olfactory sensilla in oviposition behavior. In particular, I. elegans females laid in the laboratory significantly more eggs in water from larval rearing aquaria than in distilled or tap water. Moreover, the lack of preference between rearing water and tap water with plankton suggests a role of volatiles related to conspecific and plankton presence in the oviposition site choice. I. elegans may rely on food odor for oviposition site selection, thus supporting the predictions of the "mother knows best" theory. These behavioral data are partially supported by electroantennographic responses. These findings confirm a possible role of olfaction in crucial aspects of Odonata biology

Frye MA. 2017. Insect Vision: A Neuron that Anticipates an Object's Path. Curr Biol 27:R1076-R1078.
Abstract: Dragonflies are superb aerial predators, plucking tiny insect prey from the sky. This ability depends on a visual system that has fascinated scientists for decades, and now one of its visual-target-detecting neurons has been shown to anticipate the image path of prey

Futahashi, R., 2016. Color vision and color formation in dragonflies. Curr. Opin. Insect. Sci. 17, 32-39.
Abstract: Dragonflies including damselflies are colorful and large-eyed insects, which show remarkable sexual dimorphism, color transition, and color polymorphism. Recent comprehensive visual transcriptomics has unveiled an extraordinary diversity of opsin genes within the lineage of dragonflies. These opsin genes are differentially expressed between aquatic larvae and terrestrial adults, as well as between dorsal and ventral regions of adult compound eyes. Recent topics of color formation in dragonflies are also outlined. Non-iridescent blue color is caused by coherent light scattering from the quasiordered nanostructures, whereas iridescent color is produced by multilayer structures. Wrinkles or wax crystals sometimes enhances multilayer structural colors. Sex-specific and stage-specific color differences in red dragonflies is attributed to redox states of ommochrome pigments

Futahashi, R., Kurita, R., Mano, H., Fukatsu, T., 2012. Redox alters yellow dragonflies into red. Proc. Natl. Acad. Sci. U. S. A 109, 12626-12631.

Abstract: Body color change associated with sexual maturation--so-called nuptial coloration--is commonly found in diverse vertebrates and invertebrates, and plays important roles for their reproductive success. In some dragonflies, whereas females and young males are yellowish in color, aged males turn vivid red upon sexual maturation. The male-specific coloration plays pivotal roles in, for example, mating and territoriality, but molecular basis of the sex-related transition in body coloration of the dragonflies has been poorly understood. Here we demonstrate that yellow/red color changes in the dragonflies are regulated by redox states of epidermal ommochrome pigments. Ratios of reduced-form pigments to oxidized-form pigments were significantly higher in red mature males than yellow females and immature males. The ommochrome pigments extracted from the dragonflies changed color according to redox conditions in vitro: from red to yellow in the presence of oxidant and from yellow to red in the presence of reductant. By injecting the reductant solution into live insects, the yellow-to-red color change was experimentally reproduced in vivo in immature males and mature females. Discontinuous yellow/red mosaicism was observed in body coloration of gynandromorphic dragonflies, suggesting a cell-autonomous regulation over the redox states of the ommochrome pigments. Our finding extends the mechanical repertoire of pigment-based body color change in animals, and highlights an impressively simple molecular mechanism that regulates an ecologically important color trait

Futahashi, R., Kawahara-Miki, R., Kinoshita, M., Yoshitake, K., Yajima, S., Arikawa, K., Fukatsu, T., 2015. Extraordinary diversity of visual opsin genes in dragonflies. Proc. Natl. Acad. Sci. U. S. A 112, E1247-E1256.
Abstract: Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15-33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies

Futahashi, R., Yamahama, Y., Kawaguchi, M., Mori, N., Ishii, D., Okude, G., Hirai, Y., Kawahara-Miki, R., Yoshitake, K., Yajima, S., Hariyama, T., Fukatsu, T., 2019. Molecular basis of wax-based color change and UV reflection in dragonflies. Elife. 8.
Abstract: Many animals change their body color for visual signaling and environmental adaptation. Some dragonflies show wax-based color change and ultraviolet (UV) reflection, but the biochemical properties underlying the phenomena are totally unknown. Here we investigated the UV-reflective abdominal wax of dragonflies, thereby identifying very long-chain methyl ketones and aldehydes as unique and major wax components. Little wax was detected on young adults, but dense wax secretion was found mainly on the dorsal abdomen of mature males of Orthetrum albistylum and O. melania, and pruinose wax secretion was identified on the ventral abdomen of mature females of O. albistylum and Sympetrum darwinianum. Comparative transcriptomics demonstrated drastic upregulation of the ELOVL17 gene, a member of the fatty acid elongase gene family, whose expression reflected the distribution of very long-chain methyl ketones. Synthetic 2-pentacosanone, the major component of dragonfly's wax, spontaneously formed light-scattering scale-like fine structures with strong UV reflection, suggesting its potential utility for biomimetics

Galimberti, A., Assandri, G., Maggioni, D., Ramazzotti, F., Baroni, D., Bazzi, G., Chiandetti, I., Corso, A., Ferri, V., Galuppi, M., Ilahiane, L., La, P.G., Laddaga, L., Landi, F., Mastropasqua, F., Ramellini, S., Santinelli, R., Soldato, G., Surdo, S., Casiraghi, M., 2020. Italian odonates in the Pandora's box: A comprehensive DNA barcoding inventory shows taxonomic warnings at the Holarctic scale. Mol. Ecol. Resour.
Abstract: The Odonata are considered among the most endangered freshwater faunal taxa. Their DNA-based monitoring relies on validated reference data sets that are often lacking or do not cover important biogeographical centres of diversification. This study presents the results of a DNA barcoding campaign on Odonata, based on the standard 658-bp 5' end region of the mitochondrial COI gene, involving the collection of 812 specimens (409 of which barcoded) from peninsular Italy and its main islands (328 localities), belonging to all the 88 species (31 Zygoptera and 57 Anisoptera) known from the country. Additional BOLD and GenBank data from Holarctic samples expanded the data set to 1,294 DNA barcodes. A multi-approach species delimitation analysis involving two distance (OT and ABGD) and four tree-based (PTP, MPTP, GMYC and bGMYC) methods was used to explore these data. Of the 88 investigated morphospecies, 75 (85%) unequivocally corresponded to distinct molecular operational units, whereas the remaining ones were classified as 'warnings' (i.e. showing a mismatch between morphospecies assignment and DNA-based species delimitation). These results are in contrast with other DNA barcoding studies on Odonata showing up to 95% of identification success. The species causing warnings were grouped into three categories depending on if they showed low, high or mixed genetic divergence patterns. The analysis of haplotype networks revealed unexpected intraspecific complexity at the Italian, Palearctic and Holarctic scale, possibly indicating the occurrence of cryptic species. Overall, this study provides new insights into the taxonomy of odonates and a valuable basis for future DNA and eDNA-based monitoring studies

Garrison, R.W., Ellenrieder, N.V., 2018. Damselflies of the genus Argia (Odonata: Coenagrionidae) from Ecuador with descriptions of five new species. Zootaxa. 4470, 1-69.
Abstract: Treinta y una especies de Argia son registradas de Ecuador, de las cuales dos, A. huanacina Forster y A. jocosa Hagen, constituyen nuevos registros para el pais, y cinco son nuevas para la ciencia y son descriptas aqui: Argia acridens n. sp. (Holotipo male symbol: ECUADOR, Prov. Manabi, 79 km al oeste de Santo Domingo de los Colorados, 0 degrees 20' S, 79 degrees 46' O, 260 m, 7 Mayo 1975, Paul J. Spangler et al. leg., en USNM), Argia cuspidata n. sp. (Holotipo male symbol: ECUADOR, Prov. Santo Domingo de los Tsachilas: 19 km al este de Santo Domingo de los Colorados, 0 degrees 18'49'' S, 79 degrees 1'44'' O, 740 m, 7 Mayo 1975, A. Langley J. Cohen leg., en USNM), A. philipi n. sp. (Holotipo male symbol: BOLIVIA, Dept. Cochabamba, Prov. Chapare: arroyo 5 km al sur de Villa Tunari, mediodia, 16 degrees 59'49" S, 65 degrees 24'28" O, 350 m, 4 Noviembre 2001, Jerrell J. Daigle leg., en FSCA), Argia selysi n. sp. (Holotipo male symbol: ECUADOR, Prov. Napo: Jatun Yacu, Cuenca del Rio Napo, 1 degrees 1' S, 77 degrees 50' O, 700 m, 18 Abril 1935, William Clarke-Macintyre leg., en UMMZ) y A. tennesseni n. sp. (Holotipo male symbol: ECUADOR, Prov. Orellana: arroyo 8.5 km al este de Loreto, 0 degrees 37' 6" S, 77 degrees 17' 42" O, 360 m, 14 Septiembre 1997, Kenneth J. Tennessen leg., en FSCA). Las nuevas especies son ilustradas y diagnosticadas de sus congeneres, y sus areas de distribucion conocidas son mapeadas. Para ayudar en su identificacion, se proveen tambien ilustraciones y /o mapas de distribucion de especies. 

Gering, E.J., 2017. Male-mimicking females increase male-male interactions, and decrease male survival and condition in a female-polymorphic damselfly. Evolution. 71, 1390-1396.
Abstract: Biologists are still discovering diverse and powerful ways sexual conflicts shape biodiversity. The present study examines how the proportion of females in a population that exhibit male mimicry, a mating resistance trait, influences conspecific males' behavior, condition, and survival. Like most female-polymorphic damselflies, Ischnura ramburii harbors both "andromorph" females, which closely resemble males, and sexually dimorphic "gynomorph" counterparts. There is evidence that male mimicry helps andromorphs evade detection and harassment, but males can also learn to target locally prevalent morph(s) via prior mate encounters. I hypothesized that the presence of male mimics could therefore predispose males to mate recognition errors, and thereby increase rates of costly male-male interactions. Consistent with this hypothesis, male-male interaction rates were highest in mesocosms containing more andromorph (vs. gynomorph) females. Males in andromorph-biased mesocosms also had lower final body mass and higher mortality than males assigned to gynomorph-majority treatments. Male survival and body mass were each negatively affected by mesocosm density, and mortality data revealed a marginally significant interaction between andromorph frequency and population density. These findings suggest that, under sufficiently crowded conditions, female mating resistance traits such as male mimicry could have pronounced indirect effects on male behavior, condition, and survival.

Gil-Tapetado, D., Lopez-Collar, D., Gomez, J. F., Manani-Perez, J., Cabrero-Sanudo, F. J., & Munoz, J. (2023). Climate change as a driver of insect invasions: Dispersal patterns of a dragonfly species colonizing a new region. PLoS. One. 18, e0291270, doi:PONE-D-23-22273 [pii];10.1371/journal.pone.0291270 [doi].
Abstract: The dragonfly Trithemis kirbyi Selys, 1891 recently colonized Western Europe from North Africa. Since its first record in the Iberian Peninsula in 2007, the species has been spreading northward and has become naturally established in the central and eastern Iberian Peninsula, the Balearic Islands and southern France. Despite its worldwide distribution, its rapid colonization of the western Mediterranean area occurred only very recently. The aims of this study were to evaluate (1) whether the species' colonization of the western Mediterranean is related to climate change and rising temperatures, specifically the summer warming peaks that have occurred in the last decade, (2) which climatic variables have most influenced its distribution and dispersal, and (3) its potential future dispersal and colonization capacity towards the eastern Mediterranean. We found that the dispersal and recent establishment of T. kirbyi in southwestern Europe strongly depends on increasing temperatures, particularly summer temperature peaks, which has allowed this species to disperse farther and more effectively than during years with average summer temperatures. The most important variable in the suitability models is the minimum temperature of the coldest month, which, in recent decades, has become less of a limiting factor for ectotherms. According to the models, suitable areas for the species are currently found throughout the eastern Mediterranean parts of Europe, and it is likely that it can naturally colonize these areas as it did in the Iberian Peninsula. Trithemis kirbyi is a model of how climate change and observed rising temperatures have turned previously inhospitable regions into suitable areas for exotic species, which may successfully colonize them naturally if they can reach these promising lands on their own. However, this study serves as a warning that such species can also colonize these new regions with a little help from unsuspecting means, which are often responsible for the increasingly common presence of invasive, noxious taxa in Europe

Girardin, V., Grung, M., Meland, S., 2020. Polycyclic aromatic hydrocarbons: bioaccumulation in dragonfly nymphs (Anisoptera), and determination of alkylated forms in sediment for an improved environmental assessment. Sci. Rep. 10, 10958.
Abstract: Road runoff carries a mixture of contaminants that threatens the quality of natural water bodies and the health of aquatic organisms. The use of sedimentation ponds is a nature-based solution for the treatment of road runoff. This study assessed the concentration of polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologues in sediment from seven highway sedimentation ponds and three natural urban ponds. In addition, the study explored the bioaccumulation of PAHs in dragonfly nymphs (Anisoptera). Finally, biota-sediment accumulation factors (BSAFs) were estimated. The results revealed a significant difference in the concentrations of 16 priority PAHs in sediment, with overall higher levels in sedimentation ponds (2,911 microg/kg on average) compared to natural urban ponds (606 microg/kg on average). PAH levels increased substantially once alkylated homologues were considered, with alkylated comprising between 42 and 87% of the total PAH in sediment samples. These results demonstrate the importance of alkylated forms in the environmental assessment of PAHs. The bioaccumulation assessment indicates that dragonfly nymphs bioaccumulate PAHs to a certain degree. It is not clear, however, whether they metabolize PAHs. BSAF results ranged from approx. 0.006 to 10 and indicate that BSAFs can be a powerful tool to determine the functionality of sedimentation ponds

Golab, M.J., Brodin, T., Sniegula, S., 2020. Two experimental designs generate contrasting patterns of behavioral differentiation along a latitudinal gradient in Lestes sponsa-Common-garden not so common after all? Ecol. Evol. 10, 10242-10253.
Abstract: Understanding why and how behavioral profiles differ across latitudes can help predict behavioral responses to environmental change. The first response to environmental change that an organism exhibits is commonly a behavioral response. Change in one behavior usually results in shifts in other correlated behaviors, which may adaptively or maladaptively vary across environments and/or time. However, one important aspect that is often neglected when studying behavioral expressions among populations is if/how the experimental design might affect the results. This is unfortunate since animals often plastically modify their behavior to the environment, for example, rearing conditions. We studied behavioral traits and trait correlations in larvae of a univoltine damselfly, Lestes sponsa, along its latitudinal distribution, spreading over 3,300 km. We compared behavioral profiles among larvae grown in two conditions: (a) native temperatures and photoperiods or (b) averaged constant temperatures and photoperiods (common-garden). We hypothesized latitudinal differences in behavioral traits regardless of the conditions in which larvae were grown, with northern populations expressing higher activity, boldness, and foraging efficiency. When grown in native conditions, northern larvae were bolder, more active and more effective in prey capture than central and low latitude populations, respectively, as well as showed the strongest behavioral correlations. In contrast, larvae reared in common-garden conditions showed no differences between regions in both individual traits and trait correlations. The results suggest different selective pressures acting on the studied traits across populations, with environment as a central determinant of the observed trait values. Common-garden designed experiments may evoke population-dependent levels of plastic response to the artificial conditions and, hence, generate results that lack ecological relevance when studying multi-population differences in behavior

Goldner, J. T. & Holland, J. D. (2023). Wing morphology of a damselfly exhibits local variation in response to forest fragmentation. Oecologia. 202, 369-380, doi:10.1007/s00442-023-05396-9 [pii];10.1007/s00442-023-05396-9 [doi].
Abstract: Environmental differences can lead to morphologically different subpopulations. The scale of the mosaic of morphologies should help shed light on the nature of the mechanisms at work. Previous work has shown that jewelwing damselflies have different wing sizes in different types of habitat. Our aim was to (1) describe the relationship between damselfly wing lengths and a gradient of forest fragmentation and (2) determine the spatial scale at which these morphological differences occur. We hypothesized that local adaptation would lead to differences in wing morphology over short distances. We herein test one of the several predictions that would need to be met to support this hypothesis: that wing morphology would show spatial autocorrelation at relatively short distances. We further predicted that the wing morphology would correlate to forest fragmentation. We collected jewelwing damselflies from across Indiana, USA, in habitats across a gradient of forest fragmentation. We examined the link between forest edge density and wing length using three biologically relevant landscape sizes. We then examined the distance to which wing length variation was autocorrelated using Moran's I. We found positive linear or unimodal relationships between wing length and edge density, in both males and females, at all three landscape scales. Spatial autocorrelation in wing length indicated that variation in wing length was autocorrelated at short distances, out to 1-5 km. Our findings uphold one of the predictions stemming from the hypothesis that adaptations to local environments-habitat fragmentation here-can occur at relatively fine spatial scales

Gomez-Tolosa, M., Rivera-Velazquez, G., Rioja-Paradela, T.M., Mendoza-Cuenca, L.F., Tejeda-Cruz, C., Lopez, S., 2021. The use of Odonata species for environmental assessment: a meta-analysis for the Neotropical region. Environ. Sci. Pollut. Res. Int. 28, 1381-1396.
Abstract: The order Odonata has been regularly used as an indicator of the ecosystem's condition. The objective of this review was to analyze the importance of Odonata for environmental assessments (assessment types, statistical approach, life stages, and sampling method, or particular metric), summarizing the current state, the trends, and identifying related research issues in the Neotropical region. Therefore, we selected 62 articles from 2007 to 2018 based on published research to monitor Odonata assessments in the Neotropical region. We compiled a database and ran statistical analyses for the observed frequencies. We found that ecosystem health was the most frequent assessment type and quality the most used objective. In the case of statistical tests and metrics, multivariate analyses and species richness were most used in these papers. However, because there is a great diversity of habitats in this region, there is no unique monitoring protocol to assess the quality of ecosystem health and it is needed to create a proposal for a standard evaluation protocol. Consequently, guidelines for monitoring are presented, and we suggest three stages to establish a specific protocol for each site, which records the set of species most sensitive to the exchange rate evaluated, as well as the use of rarefaction methods, the index of diversity based on the area under the curve, and multivariate analysis, among other recommendations

Gomez-Tolosa, M., Gonzalez-Soriano, E., Mendoza-Cuenca, L.F., Perez-Munguia, R.M., Rioja-Paradela, T.M., Espinoza-Medinilla, E.E., Ortega-Salas, H., Rivera-Velazquez, G., Penagos-Garcia, F.E., Lopez, S., 2022. The use of highly diverse clades as a surrogate for habitat integrity analysis: Argia damselflies as a practical tool for rapid assessments. Environ. Sci. Pollut. Res. Int. 29, 24334-24347.
Abstract: Human activities have impacted many environments on earth, and thus several species are facing an increased risk of extinction. The environmental crisis requires rapid tools to assess the ecosystem health accurately. Studies have been conducted with visual indices that quantify habitat integrity by predicting species richness and diversity. However, whether a diverse clade can predict habitat integrity has not been used. The genus Argia (Rambur, 1842) is one of the most locally diverse groups in southeastern Mexico. In this context, we hypothesized that the occurrence, species richness, and diversity of adults Argia spp. could be a better predictor of the Visual-Based Habitat Assessment Score (VBHAS) than the other taxonomic levels or less diverse clades. We found that the richness and diversity of Argia spp. are positively correlated with VBHA scores, as same as taxonomic ratios. Simultaneously, VBHA scores increase to 23.51 times when Argia spp. diversity increases. We discuss the possible use of a diverse Odonata clade, as Argia spp. could surrogate habitat integrity for local long-term biomonitoring programs. This approach requires testing with other indices and verifying a reliable and consistent relationship between diverse clades and environmental assessment scores

Gonzalez-Soriano, E., 2020. A new species of Micrathyria Kirby, 1889 from Mexico and Central America (Anisoptera: Libellulidae), with a key to Mexican species. Zootaxa. 4718, zootaxa.
Abstract: Micrathyria paulsoni sp. nov. is described on specimens collected in Veracruz, Mexico ( 19.1593-97.0045), Holotype male 9 July 2000, Laguna de Santo Domingo, Huatusco, leg E. Gonzalez-Soriano L. E. Gonzalez-Figueroa [in Coleccion Nacional de Insectos (CNIN), Instituto de Biologia, UNAM] and compared with similar species. By its enlarged hamular process, this species belong to the so-called Micrathyria didyma group

Gonzalez-Tokman, D.M., Munguia-Steyer, R., Gonzalez-Santoyo, I., Baena-Diaz, F.S., Cordoba-Aguilar, A., 2012. Support for the immunocompetence handicap hypothesis in the wild: hormonal manipulation decreases survival in sick damselflies. Evolution 66, 3294-3301.
Abstract: The immunocompetence handicap hypothesis (ICHH) states that hormones enhance sexual trait expression but impair immunity. Previous tests of the ICHH have been hampered by experimental design problems. Here, we report on an experimental test of the ICHH that includes manipulations of both hormones and infections in males of the territorial damselfly, Hetaerina americana, with accurate survival measurements. We conducted a fully factorial experiment subjecting each individual to one of three topical treatments: methoprene (a juvenile hormone analog), acetone, or control, and one of three injection treatments: bacteria, PBS, or control. We measured survival of manipulated males in both the wild and in captivity. As predicted, survival was most heavily impaired in methoprene-bacteria males than in the other groups in the wild, and no survival differences emerged in captive animals. This result confirms that survival is one cost an animal pays for increased hormonal levels. This corroborates theoretical predictions of the ICHH

Gorb, S.N., Gorb, E.V., 2019. Egg-laying job makes males hot: body temperature measurements in egg-laying tandems of the dragonfly Sympetrum vulgatum using IR camera. Naturwissenschaften. 106, 40.
Abstract: Tandem oviposition, where males guide females in contact, requires quite a substantial muscle activity from males and, therefore, stronger heat production within the male thorax compared to the female thorax. In the present study, an infrared camera equipped with a macrolens was applied in the field, in order to estimate temperature in different body regions of male and female dragonflies Sympetrum vulgatum laying eggs in tandems. In both sexes, the thorax was considerably warmer than other body parts. The male thorax was on average 3-4 degrees C warmer than that of the female. These observations support previous data that Sympetrum males have a stronger muscular activity and heat production in tandem during the egg-laying process compared to females. The data provide additional evidence that this kind of contact guarding behavior during oviposition is rather costly for males. The tip of the male abdomen was much warmer than its own abdomen in the middle region. This result might be explained by possible heat transfer from the female head to the male abdomen through the contact between male abdominal appendages and the female head. An alternative explanation might be strong activity of the muscles controlling male anal appendages. Finally, this study also demonstrated a strong potential of IR cameras in field studies of dragonfly behavioral physiology

Groeneveld,L.F., V.Clausnitzer, and H.Hadrys. 2007. Convergent evolution of gigantism in damselflies of Africa and South America? Evidence from nuclear and mitochondrial sequence data. Mol. Phylogenet. Evol. 42:339-346.
Abstract: Extreme large body size is rare in modern Zygoptera (damselflies). Only the South and Central American damselfly family Pseudostigmatidae and one African species, Coryphagrion grandis, share the morphological trait of gigantism. By means of phylogenetic analyses using two mitochondrial markers (16S rDNA and ND1) and one nuclear marker (EF1) in combination with an existing morphological data set, we trace the evolution of gigantism in damselflies. Individual and combined data sets were analyzed using the maximum parsimony, minimum evolution and maximum likelihood algorithms. Regardless of the algorithm used and the data set analyzed all principal tree topologies support a monophyly of the damselfly taxa displaying giant body size. This supports the view that the evolution of gigantism in damselflies from Africa and South America is not the result of convergent evolution due to strikingly similar habitat preferences, but rather the result of close genealogical relationship. Because modern odonates evolved before the split of Africa from Gondwanaland, the proposed phylogeny suggests that C. grandis represents a Gondwana relict

Guignard, Q., Allison, J.D., Slippers, B., 2022. The evolution of insect visual opsin genes with specific consideration of the influence of ocelli and life history traits. BMC. Ecol. Evol. 22, 2.
Abstract: BACKGROUND: Visual opsins are expressed in the compound eyes and ocelli of insects and enable light detection. Three distinct phylogenetic groups of visual opsins are found in insects, named long (LW), short (SW) and ultraviolet (UV) wavelength sensitive opsins. Recently, the LW group was found to be duplicated into the LW2b and the LW2a opsins. The expression of LW2b opsins is ocelli specific in some insects (e.g., bees, cricket, scorpion flies), but the gene was not found in other orders possessing three or less ocelli (e.g., dragonflies, beetles, moths, bugs). In flies, two LW2b homologs have been characterised, with one expressed in the ocelli and the other in the compound eyes. To date, it remains unclear which evolutionary forces have driven gains and losses of LW opsins in insects. Here we take advantage of the recent rapid increase in available sequence data (i.e., from insect genomes, targeted PCR amplification, RNAseq) to characterize the phylogenetic relationships of 1000 opsin sequences in 18 orders of Insects. The resulting phylogeny discriminates between four main groups of opsins, and onto this phylogeny we mapped relevant morphological and life history traits. RESULTS: Our results demonstrate a conserved LW2b opsin only present in insects with three ocelli. Only two groups (Brachycera and Odonata) possess more than one LW2b opsin, likely linked to their life history. In flies, we hypothesize that the duplication of the LW2b opsin occurred after the transition from aquatic to terrestrial larvae. During this transition, higher flies (Brachycera) lost a copy of the LW2a opsin, still expressed and duplicated in the compound eyes of lower flies (Nematocera). In higher flies, the LW2b opsin has been duplicated and expressed in the compound eyes while the ocelli and the LW2b opsin were lost in lower flies. In dragonflies, specialisation of flight capabilities likely drove the diversification of the LW2b visual opsins. CONCLUSION: The presence of the LW2b opsin in insects possessing three ocelli suggests a role in specific flight capabilities (e.g., stationary flight). This study provides the most complete view of the evolution of visual opsin genes in insects yet, and provides new insight into the influence of ocelli and life history traits on opsin evolution in insects

Guillermo-Ferreira R, Appel E, Urban P, Bispo PC, Gorb SN. 2017. The unusual tracheal system within the wing membrane of a dragonfly. Biol Lett 13.
Abstract: Some consider that the first winged insects had living tissue inside the wing membrane, resembling larval gills or developing wing pads. However, throughout the developmental process of the wing membrane of modern insects, cells and tracheoles in the lumen between dorsal and ventral cuticle disappear and both cuticles become fused. This process results in the rather thin rigid stable structure of the membrane. The herewith described remarkable case of the dragonfly Zenithoptera lanei shows that in some highly specialized wings, the membrane can still be supplemented by tracheae. Such a characteristic of the wing membrane presumably represents a strong specialization for the synthesis of melanin-filled nanolayers of the cuticle, nanospheres inside the wing membrane and complex arrangement of wax 

Guimaraes, A.T.B., de Lima Rodrigues, A.S., Pereira, P.S., Silva, F.G., Malafaia, G., 2020. Toxicity of polystyrene nanoplastics in dragonfly larvae: An insight on how these pollutants can affect bentonic macroinvertebrates. Sci. Total Environ. 752, 141936.
Abstract: Although nanoplastics (NPs) are known to be toxic to several groups of animals, the effects of such a toxicity on freshwater benthic macroinvertebrate communities remain unknown. Thus, the aim of the current study is to test the hypothesis that polystyrene nanoplastics (PS NPs) (34mug/L - 48h of exposure) lead to biochemical damage in Aphylla williamsoni larvae. Data have evidenced high bioaccumulation factor in the analyzed individuals; this finding indicates that, similar to sediments, water is also part of aquatic systems and favors PS NPs retention in dragonfly larvae. Despite the lack of evidence about the interference of these pollutants in the nutritional status of the analyzed animals, their bioaccumulation was associated with REDOX imbalance featured by concomitant increase in the number of evaluated oxidative stress biomarkers (nitric oxide and lipid peroxidation) and antioxidants (antioxidant activity against the DPPH radical and the superoxide dismutase enzyme). On the other hand, the reduced acetylcholinesterase activity observed in larvae exposed to PS NPs has suggested the neurotoxic effect of these pollutants, with potential impact on their nerve and neuromuscular functions. Therefore, the current study is pioneer in showing that PS NPs can affect the health of the investigated larvae, even at small concentrations, for short exposure-time; this outcome reinforces the ecotoxicological risk of these pollutants for freshwater benthic macroinvertebrates

Haber, W.A., 2020. Telebasis rojinegra (Odonata: Zygoptera: Coenagrionidae) sp. nov. from Costa Rica. Zootaxa. 4755, zootaxa.
Abstract: Telebasis rojinegra sp. nov. was recorded from ponds at La Selva Biological Station and three other sites in the Caribbean lowlands of Costa Rica. The new species appears closely related to T. boomsmae Garrison, 1994 recorded from Mexico, Belize and Costa Rica, T. collopistes Calvert, 1902 ranging from Mexico to Honduras, and T. garrisoni Bick Bick, 1995 from South America, but differs in having straighter and more elongate paraprocts and a half black pattern on the rear of the head. The female mesostigmal plates are also distinct from the above species. Telebasis rojinegra was active on the water primarily during afternoon hours

Haber, W.A., Wagner, D.L., Rosa, C.L., 2015. A new species of Erythrodiplax breeding in bromeliads in Costa Rica (Odonata: Libellulidae). Zootaxa. 3947, 386-396.
Abstract: We describe a new species, Erythrodiplax laselva (Libellulidae), that breeds in bromeliads and Cochliostema (Commelinaceae) in the eastern lowlands of Costa Rica. The closest known relative is thought to be E. castanea, widespread in Central and South America, and not E. bromeliicola, which is known to breed in bromeliads in Cuba and Jamaica. The male, female, genitalia, and larva are described and illustrated

Haber, W.A., 2019. Gynacantha vargasi (Odonata: Anisoptera: Aeshnidae) sp. nov. from Costa Rica. Zootaxa. 4612, zootaxa.
Abstract: El macho y la hembra de Gynacantha vargasi sp. nov. se describen de tres sitios en la vertiente caribena de Costa Rica. La especie se distingue de sus congeneres por sus franjas toracicas laterales de color verde limon, el femur posterior de color marron anaranjado con el apice negro, lado dorsal de la tibia trasera amarillo, la forma unica del cerco, su comportamiento diurno, y el analisis de codigo de barras. Se proporciona una clave para todas las especies de Gynacantha registradas de Mexico y America Central

Harabis, F., Ruskova, T., Dolny, A., 2019. Different Oviposition Strategies of Closely Related Damselfly Species as an Effective Defense against Parasitoids. Insects. 10.
Abstract: Parasitoidism is one of the main causes of insect egg mortality. Parasitoids are often able to detect eggs using semiochemicals released from eggs and disturbed plants. In response, female insects adopt a wide variety of oviposition strategies to reduce the detectability of eggs and subsequent mortality. We evaluated the proportion of parasitized and undeveloped eggs of three common damselfly species from the family Lestidae, the most diverse group of European damselflies, in terms of oviposition strategies, notably clutch patterning and the ability to utilize oviposition substrates with different mechanical properties. We assumed that higher costs associated with some oviposition strategies will be balanced by lower egg mortality. We found that the ability of Chalcolestes viridis to oviposit into very stiff substrates brings benefit in the form of a significantly lower rate of parasitoidism and lower proportion of undeveloped eggs. The fundamentally different phenology of Sympecma fusca and/or their ability to utilize dead plants as oviposition substrate resulted in eggs that were completely free of parasitoids. Our results indicated that ovipositing into substrates that are unsuitable for most damselfly species significantly reduces egg mortality. Notably, none of these oviposition strategies would work unless combined with other adaptations, such as prolonging the duration of the prolarval life stage or the ability to oviposit into stiff tissue.

Hassall, C., 2014. Continental variation in wing pigmentation in Calopteryx damselflies is related to the presence of heterospecifics. PeerJ. 2, e438.

Abstract: Wing pigmentation in Calopteryx damselflies, caused by the deposition of melanin, is energetically expensive to produce and enhances predation risk. However, patterns of melanisation are used in species identification, greater pigmentation is an accurate signal of male immune function in at least some species, and there may be a role for pigment in thermoregulation. This study tested two potential hypotheses to explain the presence of, and variation in, this pigmentation based on these three potential benefits using 907 male specimens of Calopteryx maculata collected from 49 sites (34 discrete populations) across the geographical range of the species in North America: (i) pigmentation varies with the presence of the closely related species, Calopteryx aequabilis, and (ii) pigment increases at higher latitudes as would be expected if it enhances thermoregulatory capacity. No gradual latitudinal pattern was observed, as might be expected if pigmentation was involved in thermoregulation. However, strong variation was observed between populations that were sympatric or allopatric with C. aequabilis. This variation was characterised by dark wings through allopatry in the south of the range and then a step change to much lighter wings at the southern border of sympatry. Pigmentation then increased further north into the sympatric zone, finally returning to allopatry levels at the northern range margin. These patterns are qualitatively similar to variation in pigmentation in C. aequabilis, meaning that the data are consistent with what would be expected from convergent character displacement. Overall, the results corroborate recent research that has suggested sexual selection as a primary driver behind the evolution of wing pigmentation in this group

Hassall, C., Keat, S., Thompson, D.J., Watts, P.C., 2014. Bergmann's rule is maintained during a rapid range expansion in a damselfly. Glob. Chang Biol. 20, 475-482.
Abstract: Climate-induced range shifts result in the movement of a sample of genotypes from source populations to new regions. The phenotypic consequences of those shifts depend upon the sample characteristics of the dispersive genotypes, which may act to either constrain or promote phenotypic divergence, and the degree to which plasticity influences the genotype-environment interaction. We sampled populations of the damselfly Erythromma viridulum from northern Europe to quantify the phenotypic (latitude-body size relationship based on seven morphological traits) and genetic (variation at microsatellite loci) patterns that occur during a range expansion itself. We find a weak spatial genetic structure that is indicative of high gene flow during a rapid range expansion. Despite the potentially homogenizing effect of high gene flow, however, there is extensive phenotypic variation among samples along the invasion route that manifests as a strong, positive correlation between latitude and body size consistent with Bergmann's rule. This positive correlation cannot be explained by variation in the length of larval development (voltinism). While the adaptive significance of latitudinal variation in body size remains obscure, geographical patterns in body size in odonates are apparently underpinned by phenotypic plasticity and this permits a response to one or more environmental correlates of latitude during a range expansion

Hassall, C., Sherratt, T.N., Watts, P.C., Thompson, D.J., 2015. Live fast, die old: no evidence of reproductive senescence or costs of mating in a damselfly (Odonata: Zygoptera). J. Anim Ecol. 84: 1542-1554.
Abstract: Recent examples of actuarial senescence in wild insect populations have challenged the long-held assumption that the brevity of wild insect life spans precludes senescence. We investigate age-related patterns in mating behaviour in adults of a short-lived damselfly, Coenagrion puella and the implications of this mating. Using capture histories for 1033 individuals over two field seasons, we conduct both pooled and stratified analyses of variations in breeding activity. Pooled analyses suggest that there is strong age-related variation in the probability of being present at the mating rendezvous. However, no age-related variation was observed in the probability of mating. Stratified approaches confirmed a general pattern of age-related declines in survival probability, but provided only equivocal evidence of an effect of age on transition between temporary breeding states. Mating males and females showed greater survival than non-mating individuals, possibly as a consequence of higher body condition. Older males that were not currently breeding were less likely to commence breeding on the next day, but showed no patterns in breeding cessation. Overall, transitions between both breeding states declined with age, suggesting that males that breed tend to continue breeding while those that do not breed continue to be unsuccessful. Female mating rates were consistently high across all ages with no age-related decline apparent. While previous research has demonstrated actuarial senescence in this population, as does this study, we find little evidence of either age-related declines in reproductive behaviour or breeding-related declines in survival, which might indicate functional senescence or costs of mating, respectively. Indeed, the greater survival in mating individuals of both sexes suggests that variations in individual quality may mediate both reproductive success and longevity. Contrary to recent studies, we found no compelling evidence for reproductive senescence or a cost of mating in an important and well-studied model odonate. The possible link between condition and ageing suggests that individual quality needs to be taken into account when studying senescence. We recommend the use of multistrata models for the future investigation of these phenomena

Hedstrom, I., Sahlen, G., 2001. A key to the adult Costa Rican "helicopter" damselflies (Odonata: Pseudostigmatidae) with notes on their phenology and life zone preferences. Rev. Biol. Trop. 49, 1037-1056.
Abstract: We present a key to the Costa Rican species of Pseudostigmatidae, comprising three genera with the following species: Megaloprepus caerulatus, Mecistogaster linearis, M. modesta, M. ornata and Pseudostigma aberrans. Pseudostigma accedens, which may occur in the region, is also included. For each species we give a brief account of morphology, phenology and life zone preferences, including distributional maps based on more than 270 records. These are not all of the known specimens from the area, but a high enough number to give a relatively good picture of the distribution and status of the species. We found M. caerulatus to be active during the first half of the year in seasonal, tropical semi-dry lowland forest and tropical moist forest at mid-elevation, but like M. linearis, M. caerulatus was active all year round in non-seasonal, tropical wet lowland forest and tropical moist forest at mid-elevation. Mecistogaster modesta also flew year round in non-seasonal, tropical wet lowland forest and tropical moist evergreen forest at mid-elevation, and likewise in seasonal and non-seasonal, tropical premontane moist forest. Only a few findings, however, have been made of M. modesta in seasonal, tropical semi-dry deciduous forest and seasonal, tropical moist evergreen forest. Mecistogaster ornata was missing entirely from non-seasonal, tropical wet lowland forest and non-seasonal, tropical moist forest at mid-elevation, while this species was active year round in seasonal, tropical dry lowland forest and tropical semi-dry forest, as well as in seasonal, tropical moist evergreen forest and tropical premontane moist forest, both at mid-elevation. Pseudostigma aberrans has so far been found too few times in Costa Rica for any indication of flight time preference

Helebrandova, J.B., Pyszko, P., Dolny, A., 2019. Behavioural Phenotypic Plasticity of Submerged Oviposition in Damselflies (Insecta: Odonata). Insects. 10.
Abstract: Emerald damselfly Lestes sponsa is a common species within the temperate zone, with no special need for protection. The tactic of submerged oviposition is well known from other Odonata species, but has rarely been noticed or described in Lestes sponsa. Our study investigated the tactics of oviposition in this species, and shows that submerged oviposition indeed occurs frequently in Lestes sponsa. We experimentally tested the difference in the roles of males and females during the submerged ovipositional behaviour by combining males/females from submerging populations with males/females from non-submerging populations. We discovered that, whereas submerging males coupling with non-submerging females did not lead to submersion, the opposite combination of pairs submerged. Other patterns of submersions are discussed further in this paper. Our research led to the conclusion that damselflies have the ability to learn and react to different situations in keeping with the learning potential of insects in general

Henry, J.R., Harrison, J.F., 2014. Effects of body size on the oxygen sensitivity of dragonfly flight. J. Exp. Biol. 217,  3447-3456.
Abstract: One hypothesis for the small size of insects relative to vertebrates, and the existence of giant fossil insects, is that atmospheric oxygen levels constrain insect body sizes because oxygen delivery is more challenging in larger insects. This study tested this hypothesis in dragonflies by measuring the oxygen sensitivity of flight metabolic rates and behavior during hovering for 11 species of dragonflies that ranged in mass by an order of magnitude. We measured flight times and flight metabolic rates in seven oxygen concentrations ranging from 30% to 2.5% to assess the sensitivity of their flight to atmospheric oxygen. We also assessed the oxygen sensitivity of flight in low-density air (nitrogen replaced with helium) in order to increase the metabolic demands of hovering flight. Lowered atmospheric densities did induce higher flight metabolic rates. Flight behavior was more sensitive to decreasing oxygen levels than flight metabolic rate. The oxygen sensitivity of flight metabolic rates and behaviors were not correlated with body size, indicating that larger insects are able to maintain an oxygen supply-to-demand balance even during flight

Henze, M.J., Lind, O., Wilts, B.D., Kelber, A., 2019. Pterin-pigmented nanospheres create the colours of the polymorphic damselfly Ischnura elegans. J. R. Soc. Interface 16, 20180785.
Abstract: Animal colours commonly act as signals for mates or predators. In many damselfly species, both sexes go through a developmental colour change as adults, and females often show colour polymorphism, which may have a function in mate choice, avoidance of mating harassment and camouflage. In the blue-tailed damselfly, Ischnura elegans, young males are bright green and turn blue as they reach maturity. Females are red ( rufescens) or violet ( violacea) as immatures and, when mature, either mimic the blue colour of the males ( androchrome), or acquire an inconspicuous olive-green ( infuscans) or olive-brown ( obsoleta). The genetic basis of these differences is still unknown. Here, we quantify the colour development of all morphs of I. elegans and investigate colour formation by combining anatomical data and reflectance spectra with optical finite-difference time-domain simulations. While the coloration primarily arises from a disordered assembly of nanospheres in the epidermis, morph-dependent changes result from adjustments in the composition of pterin pigments within the nanospheres, and from associated shifts in optical density. Other pigments fine-tune hue and brilliance by absorbing stray light. These mechanisms produce an impressive palette of colours and offer guidance for genetic studies on the evolution of colour polymorphism and visual communication

Herzog, R., Hadrys, H., 2017. Long-term genetic monitoring of a riverine dragonfly, Orthetrum coerulescens (Odonata: Libellulidae]: Direct anthropogenic impact versus climate change effects. PLoS. One. 12, e0178014.
Abstract: Modern conservationists call for long term genetic monitoring datasets to evaluate and understand the impact of human activities on natural ecosystems and species on a global but also local scale. However, long-term monitoring datasets are still rare but in high demand to correctly identify, evaluate and respond to environmental changes. In the presented study, a population of the riverine dragonfly, Orthetrum coerulescens (Odonata: Libellulidae), was monitored over a time period from 1989 to 2013. Study site was an artificial irrigation ditch in one of the last European stone steppes and "nature heritage", the Crau in Southern France. This artificial riverine habitat has an unusual high diversity of odonate species, prominent indicators for evaluating freshwater habitats. A clearing of the canal and destruction of the bank vegetation in 1996 was assumed to have great negative impact on the odonate larval and adult populations. Two mitochondrial markers (CO1 & ND1) and a panel of nuclear microsatellite loci were used to assess the genetic diversity. Over time they revealed a dramatic decline in diversity parameters between the years 2004 and 2007, however not between 1996 and 1997. From 2007 onwards the population shows a stabilizing trend but has not reached the amount of genetic variation found at the beginning of this survey. This decline cannot be referred to the clearing of the canal or any other direct anthropogenic impact. Instead, it is most likely that the populations' decay was due to by extreme weather conditions during the specific years. A severe drought was recorded for the summer months of these years, leading to reduced water levels in the canal causing also other water parameters to change, and therefore impacting temperature sensitive riverine habitat specialists like the O. coerulescens in a significant way. The data provide important insights into population genetic dynamics and metrics not always congruent with traditional monitoring data (e.g. abundance); a fact that should be regarded with caution when management plans for developed landscapes are designed.

Hill, M.J., Sayer, C.D., Wood, P.J., 2016. When is the best time to sample aquatic macroinvertebrates in ponds for biodiversity assessment? Environ. Monit. Assess. 188, 194.
Abstract: Ponds are sites of high biodiversity and conservation value, yet there is little or no statutory monitoring of them across most of Europe. There are clear and standardised protocols for sampling aquatic macroinvertebrate communities in ponds, but the most suitable time(s) to undertake the survey(s) remains poorly specified. This paper examined the aquatic macroinvertebrate communities from 95 ponds within different land use types over three seasons (spring, summer and autumn) to determine the most appropriate time to undertake sampling to characterise biodiversity. The combined samples from all three seasons provided the most comprehensive record of the aquatic macroinvertebrate taxa recorded within ponds (alpha and gamma diversity). Samples collected during the autumn survey yielded significantly greater macroinvertebrate richness (76 % of the total diversity) than either spring or summer surveys. Macroinvertebrate diversity was greatest during autumn in meadow and agricultural ponds, but taxon richness among forest and urban ponds did not differ significantly temporally. The autumn survey provided the highest measures of richness for Coleoptera, Hemiptera and Odonata. However, richness of the aquatic insect order Trichoptera was highest in spring and lowest in autumn. The results illustrate that multiple surveys, covering more than one season, provide the most comprehensive representation of macroinvertebrate biodiversity. When sampling can only be undertaken on one occasion, the most appropriate time to undertake surveys to characterise the macroinvertebrate community biodiversity is during autumn, although this may need to be modified if other floral and faunal groups need to be incorporated into the sampling programme

Hobson, K.A., Anderson, R.C., Soto, D.X., Wassenaar, L.I., 2012. Isotopic evidence that dragonflies (Pantala flavescens) migrating through the Maldives come from the northern Indian subcontinent. PLoS. One. 7, e52594.
Abstract: Large numbers of the Globe Skimmer dragonfly (Pantala flavescens) appear in the Maldives every October-December. Since they cannot breed on these largely waterless islands, it has recently been suggested that they are "falling out" during a trans-oceanic flight from India to East Africa. In addition, it has been suggested that this trans-oceanic crossing is just one leg of a multi-generational migratory circuit covering about 14,000-18,000 km. The dragonflies are presumed to accomplish this remarkable feat by riding high-altitude winds associated with the Inter-tropical Convergence Zone (ITCZ). While there is considerable evidence for this migratory circuit, much of that evidence is circumstantial. Recent developments in the application of stable isotope analyses to track migratory dragonflies include the establishment of direct associations between dragonfly wing chitin delta(2)H values with those derived from long-term delta(2)H precipitation isoscapes. We applied this approach by measuring wing chitin delta(2)H values in 49 individual Pantala flavescens from the November-December migration through the Maldives. Using a previously established spatial calibration algorithm for dragonflies, the mean wing delta(2)H value of -117+/-16 per thousand corresponded to a predicted mean natal ambient water source of -81 per thousand, which resulted in a probabilistic origin of northern India, and possibly further north and east. This strongly suggests that the migratory circuit of this species in this region is longer than previously suspected, and could possibly involve a remarkable trans-Himalayan high-altitude traverse

Hobson, K.A., Jinguji, H., Ichikawa, Y., Kusack, J.W., Anderson, R.C., 2020. Long-Distance Migration of the Globe Skimmer Dragonfly to Japan Revealed Using Stable Hydrogen (delta 2H) Isotopes. Environ. Entomol.
Abstract: The globe skimmer dragonfly, Pantala flavescens Fabricius (Odonata: Libellulidae), is a long-distance migrant, well adapted to exploiting ephemeral waterbodies. This species occurs in Japan every summer, but overwintering has only been recorded on subtropical Ishigaki Island. It is not known from where the summer immigrants originate, nor what proportion of the globe skimmers seen in Japan are of local origin. We analyzed stable hydrogen isotope (delta 2H) composition of wings of 189 P. flavescens captured at six sites in Japan from August to September in 2016 (n = 57) and from April to November in 2017 (n = 132). We determined that the majority of individuals were immigrants. Individuals of probable Japanese origin occurred only later in the year and were of lower mass on average than immigrants. Immigrants potentially originated from a broad area as far west as northern India and the Tibetan Plateau and, especially late in the season, as near as northcentral China and the Korean peninsula. However, for April samples, the most parsimonious interpretation suggested southern origins, in northern Myanmar to southern China, or possibly Borneo-Sulawesi. Our investigation underlines the power of combining stable isotope data with other information such as wind speed and direction, arrival dates, and body mass to estimate origins and to understand the life history of this and other insects

Hou, D., Yin, Y., Zhao, H., Zhong, Z., 2015. Effects of blood in veins of dragonfly wing on the vibration characteristics. Comput. Biol. Med. 58, 14-19.
Abstract: How the blood in veins of dragonfly wing affects its vibration characteristics is investigated. Based on the experimental results of the wing's morphology and microstructures, including the veins, the membranes and the pterostigma, accurate three-dimensional finite element models of the dragonfly forewing are developed. Considering the blood in veins, the total mass, mass distribution and the moments of inertia of the wing are studied. The natural frequencies/modal shapes are analyzed when the veins are filled with and without blood, respectively. The based natural frequency of the model with blood (189 Hz) is much closer to the experimental result. Relative to bending modal shapes, the torsional ones are affected more significantly by the blood. The results in this article reveal the multi-functions of the blood in dragonfly wings and have important implications for the bionic design of flapping-wing micro air vehicles

Huang, S.T., Wang, H.R., Yang, W.Q., Si, Y.C., Wang, Y.T., Sun, M.L., Qi, X., Bai, Y., 2020. Phylogeny of Libellulidae (Odonata: Anisoptera): comparison of molecular and morphology-based phylogenies based on wing morphology and migration. PeerJ. 8, e8567.
Abstract: Background: Establishing the species limits and resolving phylogenetic relationships are primary goals of taxonomists and evolutionary biologists. At present, a controversial question is about interspecific phylogenetic information in morphological features. Are the interspecific relationships established based on genetic information consistent with the traditional classification system? To address these problems, this study analyzed the wing shape structure of 10 species of Libellulidae, explored the relationship between wing shape and dragonfly behavior and living habits, and established an interspecific morphological relationship tree based on wing shape data. By analyzing the sequences of mitochondrial COI gene and the nuclear genes 18S, 28S rRNA and ITS in 10 species of dragonflies, the interspecific relationship was established. Method: The wing shape information of the male forewings and hindwings was obtained by the geometric morphometrics method. The inter-species wing shape relationship was obtained by principal component analysis (PCA) in MorphoJ1.06 software. The inter-species wing shape relationship tree was obtained by cluster analysis (UPGMA) using Mesquite 3.2 software. The COI, 18S, ITS and 28S genes of 10 species dragonfly were blasted and processed by BioEdit v6 software. The Maximum Likelihood(ML) tree was established by raxmlGUI1.5b2 software. The Bayes inference (BI) tree was established by MrBayes 3.2.6 in Geneious software. Results: The main difference in forewings among the 10 species of dragonfly was the apical, radial and discoidal regions dominated by the wing nodus. In contrast, the main difference among the hindwings was the apical and anal regions dominated by the wing nodus. The change in wing shape was closely related to the ability of dragonfly to migrate. The interspecific relationship based on molecular data showed that the species of Orthetrum genus branched independently of the other species. Compared to the molecular tree of 10 species, the wing shape clustering showed some phylogenetic information on the forewing shape (with large differences on the forewing shape tree vs. molecular tree), and there was no interspecific phylogenetic information of the hindwing shape tree vs. molecular tree. Conclusion: The dragonfly wing shape characteristics are closely related to its migration ability. Species with strong ability to migrate have the forewing shape that is longer and narrower, and have larger anal region, whereas the species that prefer short-distance hovering or standing still for a long time have forewing that are wider and shorter, and the anal region is smaller. Integrating morphological and molecular data to evaluate the relationship among dragonfly species shows there is some interspecific phylogenetic information in the forewing shape and none in the hindwing shape. The forewing and hindwing of dragonflies exhibit an inconsistent pattern of morphological changes in different species

Husband, D.M., McIntyre, N.E., 2021. Urban Areas Create Refugia for Odonates in a Semi-Arid Region. Insects. 12.
Abstract: In western Texas, most wetlands are fed from precipitation runoff, making them sensitive to drought regimes, anthropogenic land-use activities in their surrounding watersheds, and the interactive effect between these two factors. We surveyed adult odonates in 133 wetlands (49 in grassland settings, 56 in cropland, and 28 in urban areas) in western Texas from 2003-2020; 33 species were recorded. Most species were widespread generalists, but urban wetlands had the highest species richness, as well as the most unique species of any of the three wetland types. Non-metric, multidimensional scaling ordination revealed that the odonate community in urban wetlands was distinctly different in composition than the odonates in non-urban wetlands. Urban wetlands were smaller in surface area than the other wetland types, but because they were fed from more consistently available urban runoff rather than seasonal precipitation, they had longer hydroperiods, particularly during a multi-year drought when wetlands in other land-cover contexts were dry. This anthropogenically enhanced water supply was associated with higher odonate richness despite presumably impaired water quality, indicating that consistent and prolonged presence of water in this semi-arid region was more important than the presence of native land cover within which the wetland existed. Compared to wetlands in the regional grassland landscape matrix, wetlands in agricultural and urban areas differed in hydroperiod, and presumably also in water quality; these effects translated to differences in the regional odonate assemblage by surrounding land-use type, with the highest richness at urban playas. Odonates in human environments may thus benefit through the creation of a more reliably available wetland habitat in an otherwise dry region

Ilvonen, J.J., Suhonen, J., 2016. Phylogeny affects host's weight, immune response and parasitism in damselflies and dragonflies. R. Soc. Open. Sci. 3, 160421.
Abstract: Host-parasite interactions are an intriguing part of ecology, and understanding how hosts are able to withstand parasitic attacks, e.g. by allocating resources to immune defence, is important. Damselflies and dragonflies show a variety of parasitism patterns, but large-scale comparative immune defence studies are rare, and it is difficult to say what the interplay is between their immune defence and parasitism. The aim of this study was to find whether there are differences in immune response between different damselfly and dragonfly species and whether these could explain their levels of gregarine and water mite parasitism. Using an artificial pathogen, a piece of nylon filament, we measured the encapsulation response of 22 different damselfly and dragonfly species and found that (i) there are significant encapsulation differences between species, (ii) body mass has a strong association with encapsulation and parasite prevalences, (iii) body mass shows a strong phylogenetic signal, whereas encapsulation response and gregarine and water mite prevalences show weak signals, and (iv) associations between the traits are affected by phylogeny. We do not know what the relationship is between these four traits, but it seems clear that phylogeny plays a role in determining parasitism levels of damselflies and dragonflies

Ioannidis, P., Simao, F.A., Waterhouse, R.M., Manni, M., Seppey, M., Robertson, H.M., Misof, B., Niehuis, O., Zdobnov, E.M., 2017. Genomic features of the damselfly Calopteryx splendens representing a sister clade to most insect orders. Genome. Biol. Evol. 9: 415-430.
Abstract: Insects comprise the most diverse and successful animal group with over one million described species that are found in almost every terrestrial and limnic habitat, with many being used as important models in genetics, ecology, and evolutionary research. Genome sequencing projects have greatly expanded the sampling of species from many insect orders, but genomic resources for species of certain insect lineages have remained relatively limited to date. To address this paucity, we sequenced the genome of the banded demoiselle, Calopteryx splendens, a damselfly (Odonata: Zygoptera) belonging to Palaeoptera, the clade containing the first winged insects. The 1.6 Gbp C. splendens draft genome assembly is one of the largest insect genomes sequenced to date and encodes a predicted set of 22,523 protein-coding genes. Comparative genomic analyses with other sequenced insects identified a relatively small repertoire of C. splendens detoxification genes, which could explain its previously noted sensitivity to habitat pollution. Intriguingly, this repertoire includes a cytochrome P450 gene not previously described in any insect genome. The C. splendens immune gene repertoire appears relatively complete and features several genes encoding novel multi-domain peptidoglycan recognition proteins. Analysis of chemosensory genes revealed the presence of both gustatory and ionotropic receptors, as well as the insect odorant receptor coreceptor gene (OrCo) and at least four partner odorant receptors (ORs). This represents the oldest known instance of a complete OrCo/OR system in insects, and provides the molecular underpinning for odonate olfaction. The C. splendens genome improves the sampling of insect lineages that diverged before the radiation of Holometabola and offers new opportunities for molecular-level evolutionary, ecological, and behavioral studies

Janssens L, Stoks R. 2017. Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae. Aquat Toxicol 193:210-216.
Abstract: Pesticides are causing strong decreases in aquatic biodiversity at concentrations assumed safe by legislation. One reason for the failing risk assessment may be strong differences in the toxicity of the active ingredient of pesticides and their commercial formulations. Sublethal effects, especially those on behaviour, have been largely ignored in this context, yet can be equally important as lethal effects at the population and ecosystem levels. Here, we compared the toxicity of the herbicide Roundup and its active ingredient glyphosate on survival, but also on ecologically relevant sublethal traits (life history, behaviour and physiology) in damselfly larvae. Roundup was more toxic than glyphosate with negative effects on survival, behaviour and most of the physiological traits being present at lower concentrations (food intake, escape swimming speed) or even only present (survival, sugar and total energy content and muscle mass) following Roundup exposure. This confirms the toxicity of the surfactant POEA. Notably, also glyphosate was not harmless: a realistic concentration of 2mg/l resulted in reduced growth rate, escape swimming speed and fat content. Our results therefore indicate that the toxicity of Roundup cannot be fully attributed to its surfactant, thereby suggesting that also the new generation of glyphosate-based herbicides with other mixtures of surfactants likely will have adverse effects on non-target aquatic organisms. Ecotoxicological studies comparing the toxicity of active ingredients and their commercial formulations typically ignore behaviour while the here observed differential effects on behaviour likely will negatively impact damselfly populations. Our data highlight that risk assessment of pesticides ignoring sublethal effects may contribute to the negative effects of pesticides on aquatic biodiversity.

Janssens, L., Verberk, W., Stoks, R., 2018. A widespread morphological antipredator mechanism reduces the sensitivity to pesticides and increases the susceptibility to warming. Sci. Total Environ. 626, 1230-1235.
Abstract: Pollution and predation are two omnipresent stressors in aquatic systems that can interact in multiple ways, thereby challenging accurate assessment of the effects of pollutants in natural systems. Despite the widespread occurrence of morphological antipredator mechanisms, no studies have tested how these can affect the sensitivity of prey to pesticides. Sensitivity to pesticides is typically measured via reductions in growth rates and survival, but also reductions in heat tolerance are to be expected and are becoming increasingly important in a warming world. We investigated how autotomy, a widespread morphological antipredator mechanism where animals sacrifice a body part (here the caudal lamellae) to escape when attacked by a predator, modified the sensitivity to the insecticide chlorpyrifos in larvae of the damselfly Coenagrion puella. Exposure to chlorpyrifos reduced the growth rate and heat tolerance (measured as CTmax). A key finding was that the pesticide had a greater impact on growth rates of intact animals, i.e. those that retained their lamellae. This reduced sensitivity to chlorpyrifos in animals without lamellae can be explained by the reduced outer surface area which is expected to result in a lower uptake of the pesticide. Larvae that underwent autotomy exhibited a lower heat tolerance, which may also be explained by the reduced surface area and the associated reduction in oxygen uptake. There is a wide diversity of morphological antipredator mechanisms, suggesting that there will be more examples where these mechanisms affect the vulnerability to pollutants. Given the importance of pollution and predation as structuring forces in aquatic food webs, exploring the potential interactions between morphological antipredator mechanisms and sensitivity to pollutants will be crucial for risk assessment of pollutants in aquatic systems.

Jeremiason, J.D., Reiser, T.K., Weitz, R.A., Berndt, M.E., Aiken, G.R., 2016. Aeshnid dragonfly larvae as bioindicators of methylmercury contamination in aquatic systems impacted by elevated sulfate loading. Ecotoxicology 25, 456-468.

Abstract: Methylmercury (MeHg) levels in dragonfly larvae and water were measured over two years in aquatic systems impacted to varying degrees by sulfate releases related to iron mining activity. This study examined the impact of elevated sulfate loads on MeHg concentrations and tested the use of MeHg in dragonfly larvae as an indicator of MeHg levels in a range of aquatic systems including 16 river/stream sites and two lakes. MeHg concentrations in aeshnid dragonfly larvae were positively correlated (R 2 = 0.46, p < 0.01) to peak MeHg concentrations in the dissolved phase for the combined years of 2012 and 2013. This relation was strong in 2012 (R 2 = 0.85, p < 0.01), but showed no correlation in 2013 (R 2 = 0.02, p > 0.05). MeHg in dragonfly larvae were not elevated at the highest sulfate sites, but rather the reverse was generally observed. Record rainfall events in 2012 and above average rainfall in 2013 likely delivered the majority of Hg and MeHg to these systems via interflow and activated groundwater flow through reduced sediments. As a result, the impacts of elevated sulfate releases due to mining activities were not apparent in these systems where little of the sulfate is reduced. Lower bioaccumulation factors for MeHg in aeshnid dragonfly larvae were observed with increasing dissolved organic carbon (DOC) concentrations. This finding is consistent with previous studies showing that MeHg in high DOC systems is less bioavailable; an equilibrium model shows that more MeHg being associated with DOC rather than algae at the base of the food chain readily explains the lower bioaccumulation factors

Jiang, B., Zhang, J., Bai, X., Zhang, Y., Yao, Y., Li, J., Yu, G., He, S., Sun, Y., & Mikolajewski, D. J. (2023). Genetic variation and population structure of a widely distributed damselfly (Ischnura senegalensis).  Arch. Insect Biochem. Physiol 114, 1-14, doi:10.1002/arch.22015 [doi].
Abstract: Ischnura senegalensis Rambur, 1842 is among the most widespread damselfly species in the world. Unlike dragonflies with strong migration abilities, I. senegalensis have limited dispersing abilities. Gene flow among I. senegalensis populations may be greatly influenced by anthropogenic disturbance, fragmented suitable habitats, sea straits, or even global warming. In this study, to investigate the genetic diversity of I. senegalensis populations, we sequenced and collected 498 cytochrome oxidase I sequences across the Old World. Haplotype network analysis showed 51 haplotypes and I. senegalensis could be grouped into four regions (Afrotropical region, Oriental region, main Islands of Japan, and the Ryukyu Islands), each of which contains different dominant haplotypes. Based on molecular variance analysis, we found that populations from the Afrotropical region have quite a low gene flow with the Asian populations (except Yemen). Furthermore, rice cultivation may aid the dispersion of I. senegalensis in the oriental region. Populations from the Ryukyu Islands show the highest genetic diversity, which may be due to the geological separation among islands. Our results prove that I. senegalensis has great genetic diversity among different populations across the world

Juarez-Hernandez, E., Villalobos-Jimenez, G., Gutierrez-Corona, J.F., Krams, I., Gonzalez-Soriano, E., Contreras-Garduno, J., 2020. Hidden Costs in the Physiology of Argia anceps (Zigoptera: Coenagrionidae) due to Pollution. Neotrop. Entomol. 49, 227-233.
Abstract: Before a population becomes extinct, there are hidden costs in the physiology at the individual level that provide valuable insights into their condition. Here, we study two dams with one species in common (Argia anceps Garrison, 1996) to evaluate whether their physiological condition differed (total protein quantity, prophenoloxidase (proPO) and phenoloxidase (PO) activity, and protein carbonylation) during two consecutive years. The first dam, "El Gallinero" (contaminated, C), contains organic input from mines and agricultural activity, whereas the second, "Paso de Vaqueros" (non-contaminated, NC), is part of a biosphere reserve. Although at a phenological level, some physiological differences were observed (2012 vs 2013), individuals from the contaminated population had less total protein (2012, median = 1.815 mug/muL; 2013, 0.081 mug/muL) and more carbonylations in their proteins (2012, median = 19.00 nmol/mg; 2013, median = 121.69 nmol/mg) compared with the non-contaminated population (protein quantity in 2012, median = 3.716 mug/muL; 2013, median = 0.054 mug/muL; protein carbonylations in 2012, median = 0.00 nmol/mg; 2013, median = 99.44 nmol/mg). However, no significant differences were found in prophenoloxidase (C, median = 0.002 Vmax; NC, median = 0.002 Vmax) and phenoloxidase activity (C, median = 0.002 Vmax; NC, median = 0.001 Vmax). In addition, the biological oxygen demand (BOD) and Zn were more elevated in the C than NC population (C, BOD = 11.7, Zn = 0.17; NC, BOD = 8, Zn = 0.14). The results show that the impact of human activity can be observed not only through the extinction of species, but also at the physiological level of the individuals composing the populations through the evaluation of biomolecular damage, which can be observed at a much shorter scale compared with species extinction

Kallapur, V.L., 1975. Fuel economy during flight of the dragonfly Pantala flavescens (F). Indian J. Exp. Biol. 13, 200-202.

Kassner, Z., Dafni, E., Ribak, G., 2016. Kinematic compensation for wing loss in flying damselflies. J. Insect. Physiol 85, 1-9.
Abstract: Flying insects can tolerate substantial wing wear before their ability to fly is entirely compromised. In order to keep flying with damaged wings, the entire flight apparatus needs to adjust its action to compensate for the reduced aerodynamic force and to balance the asymmetries in area and shape of the damaged wings. While several studies have shown that damaged wings change their flapping kinematics in response to partial loss of wing area, it is unclear how, in insects with four separate wings, the remaining three wings compensate for the loss of a fourth wing. We used high-speed video of flying blue-tailed damselflies (Ischnura elegans) to identify the wingbeat kinematics of the two wing pairs and compared it to the flapping kinematics after one of the hindwings was artificially removed. The insects remained capable of flying and precise maneuvering using only three wings. To compensate for the reduction in lift, they increased flapping frequency by 18+/-15.4% on average. To achieve steady straight flight, the remaining intact hindwing reduced its flapping amplitude while the forewings changed their stroke plane angle so that the forewing of the manipulated side flapped at a shallower stroke plane angle. In addition, the angular position of the stroke reversal points became asymmetrical. When the wingbeat amplitude and frequency of the three wings were used as input in a simple aerodynamic model, the estimation of total aerodynamic force was not significantly different (paired t-test, p=0.73) from the force produced by the four wings during normal flight. Thus, the removal of one wing resulted in adjustments of the motions of the remaining three wings, exemplifying the precision and plasticity of coordination between the operational wings. Such coordination is vital for precise maneuvering during normal flight but it also provides the means to maintain flight when some of the wings are severely damaged

Kaunisto, K.M., Viitaniemi, H.M., Leder, E.H., Suhonen, J., 2013. Association between host's genetic diversity and parasite burden in damselflies. J. Evol. Biol. 26, 1784-1789.
Abstract: Recent research indicates that low genetic variation in individuals can increase susceptibility to parasite infection, yet evidence from natural invertebrate populations remains scarce. Here, we studied the relationship between genetic heterozygosity, measured as AFLP-based inbreeding coefficient fAFLP , and gregarine parasite burden from eleven damselfly, Calopteryx splendens, populations. We found that in the studied populations, 5-92% of males were parasitized by endoparasitic gregarines (Apicomplexa: Actinocephalidae). Number of parasites ranged from none to 47 parasites per male, and parasites were highly aggregated in a few hosts. Mean individual fAFLP did not differ between populations. Moreover, we found a positive association between individual's inbreeding coefficient and parasite burden. In other words, the more homozygous the individual, the more parasites it harbours. Thus, parasites are likely to pose strong selection pressure against inbreeding and homozygosity. Our results support the heterozygosity-fitness correlation hypothesis, which suggests the importance of heterozygosity for an individual's pathogen resistance

Kaunisto KM, Roslin T, Saaksjarvi IE, Vesterinen EJ. 2017. Pellets of proof: First glimpse of the dietary composition of adult odonates as revealed by metabarcoding of feces. Ecol Evol 7:8588-8598.
Abstract: Recent advances in molecular techniques allow us to resolve the diet of unstudied taxa. Odonates are potentially important top-down regulators of many insects. Yet, to date, our knowledge of odonate prey use is based mainly on limited observations of odonates catching or eating their prey. In this study, we examine the potential use of metabarcoding in establishing the diet of three adult odonate species (Lestes sponsa, Enallagma cyathigerum, and Sympetrum danae) at a site in southwestern Finland. To this purpose, we compared three different methods for extracting DNA from fecal samples: the Macherey-Nagel Nucleospin XS kit, a traditional salt extraction, and the Zymo Research Fecal Microprep kit. From these extracts, we amplified group-specific mitochondrial markers (COI and 16S rRNA) from altogether 72 odonate individuals, and compared them to comprehensive reference libraries. The three odonate species show major overlap in diet, with no significant differences between individuals of different size and/or gender, reflecting opportunistic foraging of adult odonates. Of a total of 41 different prey species detected, the most frequently consumed ones were Diptera, with additional records of six other orders. Based on our data, the best DNA extraction method is the traditional salt extraction, as it provides the most information on prey content while also being the most economical. To our knowledge, this is the first study to resolve the species-level diet of adult odonates. Armed with the appropriate methodological caveats, we are ready to examine the ecological role of odonates in both terrestrial and aquatic food webs, and in transferring subsidies between these two realms

Kaunisto, K.M., Roslin, T., Forbes, M.R., Morrill, A., Saaksjarvi, I.E., Puisto, A.I.E., Lilley, T.M., Vesterinen, E.J., 2020. Threats from the air: Damselfly predation on diverse prey taxa. J. Anim Ecol.
Abstract: To understand the diversity and strength of predation in natural communities, researchers must quantify the total amount of prey species in the diet of predators. Metabarcoding approaches have allowed widespread characterization of predator diets with high taxonomic resolution. To determine the wider impacts of predators, researchers should combine DNA techniques with estimates of population size of predators using mark-release-recapture (MRR) methods, and with accurate metrics of food consumption by individuals. Herein, we estimate the scale of predation exerted by four damselfly species on diverse prey taxa within a well-defined 12-ha study area, resolving the prey species of individual damselflies, to what extent the diets of predatory species overlap, and which fraction of the main prey populations are consumed. We identify the taxonomic composition of diets using DNA metabarcoding and quantify damselfly population sizes by MRR. We also use predator-specific estimates of consumption rates, and independent data on prey emergence rates to estimate the collective predation pressure summed over all prey taxa and specific to their main prey (non-biting midges or chironomids) of the four damselfly species. The four damselfly species collectively consumed a prey mass equivalent to roughly 870 (95% CL 410-1,800) g, over 2 months. Each individual consumed 29%-66% (95% CL 9.4-123) of its body weight during its relatively short life span (2.1-4.7 days; 95% CL 0.74-7.9) in the focal population. This predation pressure was widely distributed across the local invertebrate prey community, including 4 classes, 19 orders and c. 140 genera. Different predator species showed extensive overlap in diets, with an average of 30% of prey shared by at least two predator species. Of the available prey individuals in the widely consumed family Chironomidae, only a relatively small proportion (0.76%; 95% CL 0.35%-1.61%) were consumed. Our synthesis of population sizes, per-capita consumption rates and taxonomic distribution of diets identifies damselflies as a comparatively minor predator group of aerial insects. As the next step, we should add estimates of predation by larger odonate species, and experimental removal of odonates, thereby establishing the full impact of odonate predation on prey communities

Khan, M.K., 2020. Female prereproductive coloration reduces mating harassment in damselflies. Evolution.
Abstract: Conspicuous female coloration can evolve through male mate choice or via female-female competition thereby increasing female mating success. However, when mating is not beneficial, such as in pre-reproductive females, selection should favor cryptic rather than conspicuous coloration to avoid male detection and the associated harassment. Nevertheless, conspicuous female coloration occurs in many prereproductive animals, and its evolution remains an enigma. Here, I studied conspicuous female coloration in Agriocnemis femina damselflies, in which the conspicuous red color of the immature females changes to a less conspicuous green approximately a week after their emergence. I measured body size, weight, and egg numbers of the female morphs and found that red females are smaller and lighter and do not carry developed eggs. Finally, I calculated the occurrence frequency and mating frequency of red and green females in several populations over a three-year period. The results demonstrate that red females mated less frequently than green females even when red females were the abundant morph in the populations. I concluded that conspicuous female coloration is likely to function as a warning signal of sexual unprofitability, thereby reducing sexual harassment for females and unprofitable mating for males

Khelifa, R., Zebsa, R., Amari, H., Mellal, M.K., Mahdjoub, H., 2019. Field estimates of fitness costs of the pace-of-life in an endangered damselfly. J. Evol. Biol. 32, 943-954.
Abstract: Theory predicts that within-population differences in the pace-of-life can lead to cohort splitting and produce marked intraspecific variation in body size. Although many studies showed that body size is positively correlated with fitness, many argue that selection for the larger body is counterbalanced by opposing physiological and ecological selective mechanisms that favour smaller body. When a population split into cohorts with different paces of life (slow or fast cohort), one would expect to detect the fitness-size relationship among and within cohorts, that is, (a) slower-developing cohort has larger body size and higher fitness than faster-developing cohort, and (b) larger individuals within each cohort show higher fitness than smaller individuals. Here, we test these hypotheses in capture-mark-recapture field surveys that assess body size, lifespan, survival and lifetime mating success in two consecutive generations of a partially bivoltine aquatic insect, Coenagrion mercuriale, where the spring cohort is slower-developing than the autumn cohort. As expected, body size was larger in the slow-developing cohort, which is consistent with the temperature-size rule and also with the duration of development. Body size seasonal variation was greater in slow-developing cohort most likely because of the higher variation in age at maturity. Concordant with theory, survival probability, lifespan and lifetime mating success were higher in the slow-developing cohort. Moreover, individual body size was positively correlated with survival and mating success in both cohorts. Our study confirms the fitness costs of fast pace-of-life and the benefits of larger body size to adult fitness

Khelifa, R., Mahdjoub, H., Baaloudj, A., Cannings, R.A., Samways, M.J., 2021. Effects of both climate change and human water demand on a highly threatened damselfly. Sci. Rep. 11, 7725.
Abstract: While climate change severely affects some aquatic ecosystems, it may also interact with anthropogenic factors and exacerbate their impact. In dry climates, dams can cause hydrological drought during dry periods following a great reduction in dam water discharge. However, impact of these severe hydrological droughts on lotic fauna is poorly documented, despite climate change expected to increase drought duration and intensity. We document here how dam water discharge was affected by climate variability during 2011-2018 in a highly modified watershed in northeastern Algeria, and how an endemic endangered lotic damselfly, Calopteryx exul Selys, 1853 (Odonata: Calopterygidae), responded to hydrological drought episodes. Analysis was based on a compilation of data on climate (temperature, precipitation, and drought index), water dam management (water depth and discharge volume and frequency), survey data on C. exul occurrence, and capture-mark-recapture (CMR) of adults. The study period was characterized by a severe drought between 2014 and 2017, which led to a lowering of dam water depth and reduction of discharge into the river, with associated changes in water chemistry, particularly during 2017 and 2018. These events could have led to the extirpation of several populations of C. exul in the Seybouse River (Algeria). CMR surveys showed that the species was sensitive to water depth fluctuations, avoiding low and high water levels (drought and flooding). The study shows that climate change interacts with human water requirements and affects river flow regimes, water chemistry and aquatic fauna. As drought events are likely to increase in the future, the current study highlights the need for urgent new management plans for lotic habitats to maintain this species and possible others

Knight, S.M., Pitman, G.M., Flockhart, D.T.T., Norris, D.R., 2019. Radio-tracking reveals how wind and temperature influence the pace of daytime insect migration. Biol. Lett. 15, 20190327.
Abstract: Insects represent the most diverse and functionally important group of flying migratory animals around the globe, yet their small size makes tracking even large migratory species challenging. We attached miniaturized radio transmitters (less than 300 mg) to monarch butterflies ( Danaus plexippus) and common green darner dragonflies ( Anax junius) and tracked their autumn migratory movements through southern Ontario, Canada and into the United States using an automated array of over 100 telemetry towers. The farthest estimated distance a monarch travelled in a single day was 143 km at a wind-assisted groundspeed of 31 km h(-1) (8.7 m s(-1)) and the farthest estimated distance a green darner travelled in a single day was 122 km with a wind-assisted groundspeed of up to 77 km h(-1) (21.5 m s(-1)). For both species, increased temperature and wind assistance positively influenced the pace of migration, but there was no effect of precipitation. While limitations to tracking such small animals remain, our approach and results represent a fundamental advance in understanding the natural history of insect migration and environmental factors that govern their movements

Kohli, M., Djernaes, M., Sanchez, H.M., Sahlen, G., Pilgrim, E., Simonsen, T.J., Olsen, K., Ware, J., 2021. Comparative phylogeography uncovers evolutionary past of Holarctic dragonflies. PeerJ. 9, e11338.
Abstract: Here, we investigate the evolutionary history of five northern dragonfly species to evaluate what role the last glaciation period may have played in their current distributions. We look at the population structure and estimate divergence times for populations of the following species: Aeshna juncea (Linnaeus), Aeshna subarctica Walker, Sympetrum danae (Sulzer), Libellula quadrimaculata Linnaeus and Somatochlora sahlbergi Trybom across their Holarctic range. Our results suggest a common phylogeographic pattern across all species except for S. sahlbergi. First, we find that North American and European populations are genetically distinct and have perhaps been separated for more than 400,000 years. Second, our data suggests that, based on genetics, populations from the Greater Beringian region (Beringia, Japan and China) have haplotypes that cluster with North America or Europe depending on the species rather than having a shared geographic affinity. This is perhaps a result of fluctuating sea levels and ice sheet coverage during the Quaternary period that influenced dispersal routes and refugia. Indeed, glacial Beringia may have been as much a transit zone as a refugia for dragonflies. Somatochlora sahlbergi shows no genetic variation across its range and therefore does not share the geographic patterns found in the other circumboreal dragonflies studied here. Lastly, we discuss the taxonomic status of Sympetrum danae, which our results indicate is a species complex comprising two species, one found in Eurasia through Beringia, and the other in North America east and south of Beringia. Through this study we present a shared history among different species from different families of dragonflies, which are influenced by the climatic fluctuations of the past

Kohli, M., Letsch, H., Greve, C., Bethoux, O., Deregnaucourt, I., Liu, S., Zhou, X., Donath, A., Mayer, C., Podsiadlowski, L., Gunkel, S., Machida, R., Niehuis, O., Rust, J., Wappler, T., Yu, X., Misof, B., Ware, J., 2021. Evolutionary history and divergence times of Odonata (dragonflies and damselflies) revealed through transcriptomics. iScience. 24, 103324.
Abstract: Dragonflies and damselflies are among the earliest flying insects with extant representatives. However, unraveling details of their long evolutionary history, such as egg laying (oviposition) strategies, is impeded by unresolved phylogenetic relationships, particularly in damselflies. Here we present a transcriptome-based phylogenetic reconstruction of Odonata, analyzing 2,980 protein-coding genes in 105 species representing nearly all the order's families. All damselfly and most dragonfly families are recovered as monophyletic. Our data suggest a sister relationship between dragonfly families of Gomphidae and Petaluridae. According to our divergence time estimates, both crown-Zygoptera and -Anisoptera arose during the late Triassic. Egg-laying with a reduced ovipositor apparently evolved in dragonflies during the late Jurassic/early Cretaceous. Lastly, we also test the impact of fossil choice and placement, particularly, of the extinct fossil species, daggerTriassolestodes asiaticus, and daggerProterogomphus renateae on divergence time estimates. We find placement of daggerProterogomphus renateae to be much more impactful than daggerTriassolestodes asiaticus

Koyanagi, T., Maoka, T., Misawa, N., 2021. Fecal Microflora from Dragonflies and Its Microorganisms Producing Carotenoids. Adv. Exp. Med. Biol. 1261, 209-216.
Abstract: The intestines of insects are assumed to be the niche of various microbial groups, and a unique microflora could be formed under environmental conditions different from mammalian intestinal tracts. This chapter describes the bacterial flora formed in the intestines of two dragonfly species, "akatombo" (the red dragonfly; Sympetrum frequens) and "usubaki-tombo" (Pantala flavescens), which fly over a long distance, and carotenoid-producing microorganisms isolated from this flora. C30 carotenoids, which were produced by a bacterium Kurthia gibsonii isolated from S. frequens, were structurally determined

Kumar, A., Kumar, N., Das, R., Lakhani, P., Bhushan, B., 2019. In vivo structural dynamic analysis of the dragonfly wing: the effect of stigma as its modulator. Philos. Trans. A. Math. Phys. Eng. Sci. 377, 20190132.
Abstract: The flapping of the dragonfly forewing under in vivo condition has been analysed by image correlation technique to get an insight of its structural dynamics. The modal parameters such as flapping frequency, natural frequencies, mode shapes and modal strain have been obtained that will facilitate the biomimetic design of wings for micro air vehicles. The stigma, which is a pigmented spot at the leading edge of the wing near the tip having heavier mass, takes an active role in the real-time flapping by shaping its trajectory as eight-shaped, which enhances the drag coefficient and stroke efficiency. The extra mass on it and its removal transformed the trajectory into two different elliptical and oval shapes, respectively, which reduced the drag coefficient and stroke efficiency of the flapping wing by altering the flapping kinematics. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 2).

Kuznetsova, V.G., Golub, N.V., 2020. A checklist of chromosome numbers and a review of karyotype variation in Odonata of the world. Comp Cytogenet. 14, 501-540.
Abstract: The ancient insect order Odonata is divided into three suborders: Anisoptera and Zygoptera with approximately 3000 species worldwide each, and Anisozygoptera with only four extant species in the relict family Epiophlebiidae. An updated list of Odonata species studied regarding chromosome number, sex chromosome mechanism and the occurrence of m-chromosomes (= microchromosomes) is given. Karyotypes of 607 species (198 genera, 23 families), covering approximately 10% of described species, are reported: 423 species (125 genera, 8 families) of the Anisoptera, 184 species (72 genera, 14 families) of the Zygoptera, and one species of the Anisozygoptera. Among the Odonata, sex determination mechanisms in males can be of X(0), XY and X1X2Y types, and diploid chromosome numbers can vary from 6 to 41, with a clear mode at 2n = 25(60%) and two more local modes at 2n = 27(21%) and 2n = 23(13%). The karyotype 2n = 25(24A + X) is found in each of the three suborders and is the most typical (modal) in many families, including the best-covered Libellulidae, Corduliidae (Anisoptera), Lestidae, Calopterygidae, and Platycnemididae (Zygoptera). This chromosome set is considered ancestral for the Odonata in general. Chromosome rearrangements, among which fusions and fissions most likely predominated, led to independent origins of similar karyotypes within different phylogenetic lineages of the order. The karyotype 2n = 27(26A + X) prevails in Aeshnidae and Coenagrionidae, whereas the karyotype 2n = 23(22A + X) is modal in Gomphidae and Chlorocyphidae, in both pairs of families one being from the Anisoptera while the other from the Zygoptera

Lai, Y.H., Lin, Y.J., Chang, S.K., Yang, J.T., 2020. Effect of wing-wing interaction coupled with morphology and kinematic features of damselflies. Bioinspir. Biomim.
Abstract: We investigated the effect of the wing-wing interaction, which is one key aspect of flight control, of damselflies (Matrona cyanoptera and Euphaea formosa) in forward flight that relates closely to their body morphologies and wing kinematics. We used two high-speed cameras aligned orthogonally to measure the flight motions and adopted 3D numerical simulation to analyze the flow structures and aerodynamic efficiencies. The results clarify the effects of wing-wing interactions, which are complicated combinations of biological morphology, wing kinematics and fluid dynamics. As the amplitude of the hindwing of Matrona cyanoptera is larger than that of Euphaea formosa, the effect of the wing-wing interaction is more constructive. Restricted by the body morphology of Euphaea formosa, the flapping range of the hindwing is below the body. With the forewing in the lead, the hindwing is farther from the forewing, which is not susceptible to the wake of the forewing, and enables superior lift and thrust. Because of the varied rotational motions, the different shed direction of the wakes of the forewings causes the optimal thrust to occur in different wing phases. Because of its biological limitations, a damselfly can use an appropriate phase to fulfill the desired flight mode. The wing-wing interaction is a compromise between lift efficiency and thrust efficiency. The results reveal that a damselfly with the forewing in the lead can have an effective aerodynamic performance in flight. As an application, in the design concept of a micro-aircraft, increasing the amplitude of the hindwing might enhance the wing-wing interaction, thus controlling the flight modes

Lambret, P., Janssens, L., Stoks, R., 2021. The impact of salinity on a saline water insect: contrasting survival and energy budget. J. Insect Physiol 104224.
Abstract: Water salinity is a major driver of aquatic insects' distribution. Saline species are usually generalists with high survival and performance at both low and high salinity levels. Yet, costs of high salinity may be underestimated as these are most often measured in terms of larval life history traits, while effects of larval stressors may only be detectable when looking at physiological traits and traits in the adult stage. Here, we assessed the lethal and sublethal physiological effects of embryonic and larval exposure to a range of salinity levels in the damselfly Lestes macrostigma, both during and after metamorphosis. This species inhabits temporary freshwaters where salinity increases during the drying phase. Salinity had no effect on egg hatching success within the range 2-9.5 g/L sea salt (conductivity range 3.45-14.52 mS/cm). With increasing salinity (up to 16 g/L, 23.35 mS/cm), growth rate decreased and larvae took longer to emerge and did so at a smaller size. Larval survival to metamorphosis increased with salinity up to 8 g/L (12.45 mS/cm) and then declined at 16 g/L. Exposure to salinity in the larval stage had no effect across metamorphosis on both the adult thorax muscle mass and flight performance, and the investment in immune function. Increasing salinity in the larval stage also had no effect on the energy available but increased the energy consumption in the adult stage, resulting in a lower net energy budget. These negative sublethal effects of increasing salinity hence bridged metamorphosis and contrasted with the mortality data, suggesting that the higher mortality at the low salinity levels selected for larvae with the best body condition. Our results highlight the importance of taking into account other life-history and physiological traits, besides mortality, ideally across different life stages, to better understand and predict consequences of increasing salinization on freshwater insects

Lancaster, L.T., Dudaniec, R.Y., Chauhan, P., Wellenreuther, M., Svensson, E.I., Hansson, B., 2016. Gene expression under thermal stress varies across a geographic range expansion front. Mol. Ecol. 25, 1141-1156.
Abstract: Many ectothermic species are currently expanding their distributions polewards due to anthropogenic global warming. Molecular genetic mechanisms facilitating range expansion under these conditions are largely unknown, but understanding these could help mitigate expanding pests and disease vectors, or help explain why some species fail to track changing climates. Here, using RNA-seq data, we examine genome-wide changes in gene expression under heat and cold stress in the range-expanding damselfly Ischnura elegans in northern Europe. We find that both the number of genes involved and levels of gene expression under heat stress have become attenuated during the expansion, consistent with a previously-reported release from selection on heat tolerances as species move polewards. Genes upregulated under cold stress differed between core and edge populations, corroborating previously-reported rapid adaptation to cooler climates at the expansion front. Expression of sixty-nine genes exhibited a region x treatment effect; these were primarily upregulated in response to heat stress in core populations but in response to cold stress at the range edge, suggesting that some cellular responses originally adapted to heat stress may switch to cold stress functionality upon encountering novel thermal selection regimes during range expansion. Transcriptional responses to thermal stress involving heat shock and neural function genes were largely geographically conserved, while retrotransposon, regulatory, muscle function and defence gene expression patterns were more variable. Flexible mechanisms of cold stress response and the ability of some genes to shift their function between heat and cold stress might be key mechanisms facilitating rapid poleward expansion in insects. This article is protected by copyright. All rights reserved

Lancer, B.H., Evans, B.J.E., Fabian, J.M., O'Carroll, D.C., Wiederman, S.D., 2019. A Target-Detecting Visual Neuron in the Dragonfly Locks-on to Selectively Attended Targets. J. Neurosci.
Abstract: The visual world projects a complex and rapidly changing image onto the retina of many animal species. This presents computational challenges for those animals reliant on visual processing to provide an accurate representation of the world. One such challenge is parsing a visual scene for the most salient targets, such as the selection of prey amidst a swarm. The ability to selectively prioritize processing of some stimuli over others is known as 'selective attention'. We recently identified a dragonfly visual neuron called 'Centrifugal Small Target Motion Detector 1' (CSTMD1) that exhibits selective attention when presented with multiple, equally salient targets. Here we conducted in vivo, electrophysiological recordings from CSTMD1 in wild-caught male dragonflies (Hemicordulia tau), whilst presenting visual stimuli on an LCD monitor. To identify the target selected in any given trial, we uniquely modulated the intensity of the moving targets (frequency-tagging). We found that the frequency information of the selected target is preserved in the neuronal response, whilst the distracter is completely ignored. We also show that the competitive system that underlies selection in this neuron can be biased by the presentation of a preceding target on the same trajectory, even when it is of lower contrast than an abrupt, novel distracter. With this improved method for identifying and biasing target selection in CSTMD1, the dragonfly provides an ideal animal model system to probe the neuronal mechanisms underlying selective attention.Significance Statement: We present the first application of frequency-tagging to intracellular neuronal recordings, demonstrating that the frequency component of a stimulus is encoded in the spiking response of an individual neuron. Using this technique as an identifier, we demonstrate that CSTMD1 'locks on' to a selected target and encodes the absolute strength of this target, even in the presence of abruptly-appearing, high-contrast distracters. The underlying mechanism also permits selection to switch between targets mid-trail, even among equivalent targets. Taken together, these results demonstrate greater complexity in this selective attention system than would be expected in a winner-takes-all network. These results are in contrast to typical findings in the primate and avian brain, but display intriguing resemblance to observations in human psychophysics

Lancer, B.H., Evans, B.J.E., Wiederman, S.D., 2020. The visual neuroecology of anisoptera. Curr. Opin. Insect Sci. 42, 14-22.
Abstract: Dragonflies belong to the oldest known lineage of flying animals, found across the globe around streams, ponds and forests. They are insect predators, specialising in ambush attack as aquatic larvae and rapid pursuit as adults. Dragonfly adults hunt amidst swarms in conditions that confuse many predatory species, and exhibit capture rates above 90%. Underlying the performance of such a remarkable predator is a finely tuned visual system capable of tracking targets amidst distractors and background clutter. The dragonfly performs a complex repertoire of flight behaviours, from near-motionless hovering to acute turns at high speeds. Here, we review the optical, neuronal, and behavioural adaptations that underlie the dragonflies' ability to achieve such remarkable predatory success

Laughlin, S., McGinness, S., 1978. The structures of dorsal and ventral regions of a dragonfly retina. Cell Tissue Res. 188, 427-447.
Abstract: The apposition eyes of the corduliid dragonfly Hemicordulia tau are each divided by pigment colour, facet size and facet arrangement into three regions: dorsal, ventral, and a posterior larval strip. Each ommatidium has two primary pigment cells, twenty-five secondary pigment cells, and eight receptor cells, all surrounded by tracheae which probably prevent light passing between ommatidia, and reduce the weight of the eye. Electron microscopy reveals that the receptor cells are of two types: small vestigial cells making virtually no contribution to the rhabdom, and full-size typical cells. The ventral ommatidia have a distal typical cell (oriented either horizontally or vertically), four medial typical cells, two proximal typical cells and one full-length vestigial cell. The dorsal ommatidia have only four full-length typical cells, and one distal and three vestigial full-length cells. The cross-section of dorsal rhabdoms is small and circular distally, but expands to a large three-pointed star medially and proximally. The tiered receptor arrangement in the ventral ommatidia is typical of other Odonata but the dorsal structure has not been fully described in other species. Specialised dorsal eye regions are typical of insects that detect others against the sky

Lee, D.J., Matthews, P.G.D., 2020. How insects transition from water to air: Respiratory insights from dragonflies. Comp Biochem. Physiol A Mol. Integr. Physiol 253, 110859.
Abstract: The transition of animal life from water onto land is associated with well-documented changes in respiratory physiology and blood chemistry, including a dramatic increase in blood pCO2 and bicarbonate, and changes in ventilatory control. However, these changes have primarily been documented among ancestrally aquatic animal lineages that have evolved to breathe air. In contrast, the physiological consequences of air-breathing animals secondarily adopting aquatic gas exchange are not well explored. Insects are arguably the most successful air-breathing animals, but they have also re-evolved the ability to breathe water multiple times. The juvenile life stages of many insect lineages possess tracheal gills for aquatic gas exchange, but all shift back to breathing air in their adult form. This makes these amphibiotic insects an instructive contrast to most other animal groups, being not only an ancestrally air-breathing group of animals that have re-adapted to life in water, but also a group that undergoes an ontogenetic shift from water back to air across their life cycle. This graphical review summarizes the current knowledge on how blood acid-base balance and ventilatory control change in the dragonfly during its water-to-air transition, and highlights some of the remaining gaps to be filled

Letsch, H., Gottsberger, B., Ware, J.L., 2016. Not going with the flow: a comprehensive time-calibrated phylogeny of dragonflies (Anisoptera: Odonata: Insecta) provides evidence for the role of lentic habitats on diversification. Mol. Ecol. 25, 1340-1353.
Abstract: Ecological diversification of aquatic insects has long been suspected to have been driven by differences in freshwater habitats, which can be classified into flowing (lotic) waters, and standing (lentic) waters. The contrasting characteristics of lotic and lentic freshwater systems imply different ecological constraints on their inhabitants. The ephemeral and discontinuous character of most lentic water bodies may encourage dispersal by lentic species in turn reducing geographical isolation among populations. Hence, speciation probability would be lower in lentic species. Here, we assess the impact of habitat use on diversification patterns in dragonflies (Anisoptera: Odonata). Based on eight nuclear and mitochondrial genes, we inferred species diversification with a model-based evolutionary framework, to account for rate variation through time and among lineages, and to estimate the impact of larval habitat on the potentially non-random diversification among anisopteran groups. Ancestral state reconstruction revealed lotic fresh water systems as their original primary habitat, while lentic waters have been colonised independently in Aeshnidae, Corduliidae and Libellulidae. Furthermore, our results indicate a positive correlation of speciation and lentic habitat colonisation by dragonflies: speciation rates increased in lentic Aeshnidae and Libellulidae, whereas they remain mostly uniform among lotic groups. This contradicts the hypothesis of inherently lower speciation in lentic groups and suggests species with larger ranges are more likely to diversify, perhaps due to higher probability of larger areas being dissected by geographical barriers. Furthermore, larger range sizes may comprise more habitat types, which could also promote speciation by providing additional niches, allowing the coexistence of emerging species. This article is protected by copyright. All rights reserved.

Lesch, V., Bouwman, H., 2018. Adult dragonflies are indicators of environmental metallic elements. Chemosphere 209, 654-665.
Abstract: Adult dragonflies (Insecta; Odonata) are aerial predatory arthropods that occur globally except in the polar regions. However, we know of no research on adult dragonflies as potential indicators of metallic elements in the environment or metallic element concentrations and relative contribution patterns between sites, species, size classes, habitat types, and relation to possible pollution sources. There is also no information available about adult dragonflies and their responses to toxic metals. However, metallic elements are toxic in elevated concentrations to all organisms. We predict that adult dragonflies would be suitable indicators of elemental concentrations. We analysed 105 adult male dragonflies from 21 sites in South Africa for 33 metallic elements including Hg, As, Pb, Cr, Cu, Cd, Ni, Se, Al, and Au. The results indicated that all species of dragonflies, regardless of body size, are suitable indicators. Furthermore, different aquatic habitat types did not affect the metallic element concentrations at the scale of this study. Dragonflies collected near wastewater treatment plants showed concentrations of certain elements such as Au higher than from elsewhere. Elements such as As and Pb were found at elevated concentrations (relative to the other sites) in dragonflies collected near mines. Dragonflies from sampling sites near potential pollution sources, but had seemingly isolated water sources, showed lower metallic element concentrations when compared with other sites. We conclude that adult dragonflies would be good indicators of environmental metallic elements.

Li, X.J., Zhang, Z.H., Liang, Y.H., Ren, L.Q., Jie, M., Yang, Z.G., 2014. Antifatigue properties of dragonfly Pantala flavescens wings. Microsc. Res. Tech. 77, 356-362.
Abstract: The wing of a dragonfly is thin and light, but can bear high frequent alternating stress and present excellent antifatigue properties. The surface morphology and microstructure of the wings of dragonfly Pantala flavescens were observed using SEM in this study. Based on the biological analysis method, the configuration, morphology, and structure of the vein were studied, and the antifatigue properties of the wings were investigated. The analytical results indicated that the longitudinal veins, cross veins, and membrane of dragonfly wing form a optimized network morphology and spacially truss-like structure which can restrain the formation and propagation of the fatigue cracks. The veins with multilayer structure present high strength, flexibility, and toughness, which are beneficial to bear alternating load during the flight of dragonfly. Through tensile-tensile fatigue failure tests, the results were verified and indicate that the wings of dragonfly P. flavescens have excellent antifatigue properties which are the results of the biological coupling and synergistic effect of morphological and structural factors

Liao, J., Wu, Z., Wang, H., Xiao, S., Mo, P., & Cui, X. (2023). Projected Effects of Climate Change on Species Range of Pantala flavescens, a Wandering Glider Dragonfly. Biology. (Basel) 12, doi:biology12020226 [pii];biology-12-00226 [pii];10.3390/biology12020226 [doi].
Abstract: Dragonflies are sensitive to climate change due to their special habitat in aquatic and terrestrial environments, especially Pantala flavescens, which have extraordinary migratory abilities in response to climate change on spatio-temporal scales. At present, there are major gaps in the documentation of insects and the effects of climatic changes on the habitat and species it supports. In this study, we model the global distribution of a wandering glider dragonfly, P. flavescens, and detected the important environmental factors shaping its range, as well as habitat shifts under historical and future warming scenarios. The results showed a global map of species ranges of P. flavescens currently, including southern North America, most of South America, south-central Africa, most of Europe, South, East and Southeast Asia, and northern Oceania, in total, ca. 6581.667 x 10(4) km(2). BIO5 (the max temperature of warmest month) and BIO13 (the precipitation of wettest month) greatly explained its species ranges. The historic refugia were identified around the Great Lakes in the north-central United States. Future warming will increase the total area of suitable habitat and shift the type of suitable habitat compared to the current distribution. The habitat suitability of P. flavescens decreased with elevation, global warming forced it to expand to higher elevations, and the habitat suitability of P. flavescens around the equator increased with global warming. Overall, our study provides a global dynamic pattern of suitable habitats for P. flavescens from the perspective of climate change, and provides a useful reference for biodiversity research and biological conservation

Lin, H.T., Leonardo, A., 2017. Heuristic Rules Underlying Dragonfly Prey Selection and Interception. Curr. Biol. 27, 1124-1137.
Abstract: Animals use rules to initiate behaviors. Such rules are often described as triggers that determine when behavior begins. However, although less explored, these selection rules are also an opportunity to establish sensorimotor constraints that influence how the behavior ends. These constraints may be particularly significant in influencing success in prey capture. Here we explore this in dragonfly prey interception. We found that in the moments leading up to takeoff, perched dragonflies employ a series of sensorimotor rules that determine the time of takeoff and increase the probability of successful capture. First, the dragonfly makes a head saccade followed by smooth pursuit movements to orient its direction-of-gaze at potential prey. Second, the dragonfly assesses whether the prey's angular size and speed co-vary within a privileged range. Finally, the dragonfly times the moment of its takeoff to a prediction of when the prey will cross the zenith. Each of these processes serves a purpose. The angular size-speed criteria biases interception flights to catchable prey, while the head movements and the predictive takeoff ensure flights begin with the prey visually fixated and directly overhead-the key parameters that underlie interception steering. Prey that do not elicit takeoff generally fail at least one of the criterion, and the loss of prey fixation or overhead positioning during flight is strongly correlated with terminated flights. Thus from an abundance of potential targets, the dragonfly selects a stereotyped set of takeoff conditions based on the prey and body states most likely to end in successful capture.

Liu, C., Du, R., Li, F., Sun, J., 2022. Bioinspiration of the vein structure of dragonfly wings on its flight characteristics. Microsc. Res. Tech. 85, 829-839.
Abstract: Dragonflies have excellent flight characteristics, which are inextricably related to the characteristics of their wings. Their wings not only support a variety of loads during flight but also maintain high-efficiency flight characteristics. In this study, the forewing of a dragonfly (Pantala flavescens (Fabricius)) was used as a research object to explore the microstructure of the surface, cross section, and the vein distribution. Three-dimensional models of three different structures of the forewing vein, including an oval-shaped hollow tube, a circular hollow tube, and a circular solid tube, were established. Fluid dynamics analysis of these three forewing models under different angles of attack during gliding was carried out by FLUENT software, and subsequently, the influence of the dragonfly forewing vein structure on its flight characteristics was analyzed. The numerical simulation results indicated that the vein structure has a considerable influence on the lift, drag, and lift-drag ratio of the P. flavescens forewing. It was indicated that among the tested models, the forewing model with oval-shaped hollow tubular veins has better flight efficiency and aerodynamic characteristics. The results of this study may provide the basis for a novel bionic concept of flapping wing microaircraft design

Liu, H., Jiang, F., Wang, S., Wang, H., Wang, A., Zhao, H., Xu, D., Yang, B., Fan, W., 2022. Chromosome-level genome of the globe skimmer dragonfly (Pantala flavescens). Gigascience. 11.
Abstract: BACKGROUND: The globe skimmer dragonfly (Pantala flavescens) is a notable Odonata insect distributed in nature fields and farmlands worldwide, and it is commonly recognized as a natural enemy because it preys on agricultural pests and health pests. As one of the sister groups of winged insects, odonatan species are key to understanding the evolution of insect wings. FINDINGS: We present a high-quality reference genome of P. flavescens, which is the first chromosome-level genome in the Palaeoptera (Odonata and Ephemeroptera). The assembled genome size was 662 Mb, with a contig N50 of 16.2 Mb. Via Hi-C scaffolding, 648 Mb (97.9%) of contig sequences were clustered, ordered, and assembled into 12 large scaffolds, each corresponding to a natural chromosome. The X chromosome was identified by sequence coverage depth. The repetitive sequences and gene density of the X chromosome are similar to those of autosomal sequences, but the X chromosome shows a much lower degree of heterozygosity. Our analysis shows that the effective population size experienced 3 declining events, which may have been caused by climate change and environmental pollution. CONCLUSIONS: The genome of P. flavescens provides more information on the biology and evolution of insects and will help for the use of this species in pest control

Lohmann, A.C., Corcoran, A.J., Hedrick, T.L., 2019. Dragonflies use underdamped pursuit to chase conspecifics. J. Exp. Biol. 222.
Abstract: Pursuit is a common behavior exhibited by animals chasing prey, competitors and potential mates. Because of their speed and maneuverability, dragonflies are frequently studied as a model system for biological pursuit. Most quantitative studies have focused on prey pursuits in captive environments. To determine whether a different pursuit strategy is used when chasing conspecifics of nearly equal speed and agility, we recorded 3D flight trajectories from nine territorial chases between male Erythemis simplicicollis dragonflies in natural field conditions. During chases, dragonflies used an interception strategy with an unusually high-magnitude gain (k=-10.03 s(-1) horizontal; -8.86 s(-1) vertical) and short time delay (tau=50 ms). The product ktau determines how aggressively a pursuer corrects course to achieve interception. Previous studies of prey pursuit have found ktau values close to -1/e (-0.37), the time-optimal value for achieving pursuit without overshooting. However, we found that dragonflies chasing conspecifics use more negative ktau (-0.50 horizontal; -0.44 vertical), resulting in pursuits with a high degree of overshooting (i.e. moving past the target and alternating position from side to side). We confirmed via simulation that the observed gain and delay produce overshooting. We propose that overshooting is an adaptive feature of conspecific chases that can be achieved with only slight modification of the strategy used for intercepting prey. Overshooting might help avoid potentially damaging collisions while exhibiting the pursuing animal's flight performance and competitive ability. Repeated close approaches might also evoke evasive responses from the other dragonfly, effectively herding the competitor out of the territory

Lorenzo-Carballa, M.O., Garrison, R.W., Encalada, A.C., Cordero-Rivera, A., 2020. Darwin Returns to the Galapagos: Genetic and Morphological Analyses Confirm the Presence of Tramea darwini at the Archipelago (Odonata, Libellulidae). Insects. 12.
Abstract: The status of the Tramea species present in the Galapagos Islands (Odonata, Libellulidae) has been the subject of a long-standing debate among odonatologists. Here, we use molecular and morphological data to analyze a series of specimens from this genus collected in 2018 from the Islands of San Cristobal, Isabela, and Santa Cruz, with the aim of determining their relationship with Tramea calverti Muttkowski and with their currently considered senior synonym T. cophysa Hagen. We combined sequencing of mitochondrial and nuclear DNA with morphological examination of several specimens of Tramea, including representatives of continental T. cophysa and T. calverti. Our molecular analyses place the Tramea from Galapagos in the same clade as T. calverti, with T. cophysa as a closely related species. The morphological analyses found only one consistent difference between T. cophysa and T. calverti: the presence of an accessory lobe in the male vesica spermalis of T. cophysa that is absent in T. calverti and in the Tramea from Galapagos. In agreement with our genetic results, the overall morphological differences documented by us indicate that the Galapagos material examined is conspecific with T. calverti. In light of this, and following the principle of priority in taxonomic nomenclature, Tramea calverti Muttkowski, 1910 should hereafter be considered a junior synonym of Tramea darwini Kirby, 1889

Lu, K., Shen, S., Miller, L. M., & Huang, X. (2023). Golden ratio in venation patterns of dragonfly wings. Sci. Rep. 13, 7820, doi:10.1038/s41598-023-34880-8 [pii];34880 [pii];10.1038/s41598-023-34880-8 [doi].
Abstract: The vein pattern in insect wings allows this lightweight structure to carry multiple biological functions. Here, an investigation of the angular distribution of the vein struts in dragonfly wings revealed that the golden angle or golden ratio dominates the venation patterns. We find that the golden angle dominates the intervein angles in regions where thin veins and membranes demand strength reinforcement. A golden ratio partition method has thus been developed that explains a set of preferred intervein angles in distorted polygon-shaped venation cells throughout the venation pattern in dragonfly wings. These observations provide new evidence that the wing structure is spatially optimized, by the golden rule in nature, for supporting biomechanical functions of dragonfly wings

Ma, T., Ding, Y., Xu, F., Zhang, C., Zhou, M., Tang, Y., Chen, Y., Wen, Y., Chen, R., Tang, B., & Wang, S. (2024). Effects of acute and chronic chromium stress on the expression of heat shock protein genes and activities of antioxidant enzymes in larvae of Orthetrum albistylum. Environ. Pollut. 340, 122712, doi:S0269-7491(23)01714-1 [pii];10.1016/j.envpol.2023.122712 [doi].
Abstract: The dragonfly species Orthetrum albistylum, can accumulate heavy metals from its aquatic environment and thus serves as a biological indicator for monitoring and evaluating water quality. Heat shock proteins (HSPs) play important biological roles in resistance to various types of environmental stress. The full-length cDNA sequences of the heat shock cognate (hsc) 70 and heat shock protein (hsp) 70 genes were cloned from O. albistylum larvae. Relative levels of expression of hsc70 and hsp70 in the head, epidermis, midgut, and adipose tissue were measured by qRT-PCR after chronic and acute contamination of 5-8 instar larvae with chromium (Cr) solution, and under control conditions. Activities of superoxide dismutase (SOD) and catalase (CAT) in chronically contaminated larvae were also measured. Phylogenetic analysis revealed that the cloned hsc70 and hsp70 genes were highly homologous to known HSP70 family members reported in other insects. The mRNA levels of hsc70 and hsp70 did not differ significantly in various larval tissues. Under chronic chromium stress, hsc70 and hsp70 expression were upregulated to a maximum and then downregulated; hsp70 mRNA levels were higher than those of hsc70 at all concentrations of chromium. Under acute chromium stress, hsc70 expression was inhibited at low chromium concentrations and upregulated at chromium concentrations higher than 125 mg/L. However, hsp70 expression was higher than that in the control group and markedly higher than that of hsc70. Changes in SOD and CAT activities displayed consistent trends for different chronic chromium concentrations, first increasing and then decreasing over time. Collectively, these findings demonstrated the response of the HSP family of genes and antioxidant enzymes following exposure to heavy metal stress, as well as their potential applicability as biomarkers for monitoring environmental pollutants

MacLeod, N., Price, B., Stevens, Z., 2022. What you sample is what you get: ecomorphological variation in Trithemis (Odonata, Libellulidae) dragonfly wings reconsidered. BMC. Ecol. Evol. 22, 43.
Abstract: BACKGROUND: The phylogenetic ecology of the Afro-Asian dragonfly genus Trithemis has been investigated previously by Damm et al. (in Mol Phylogenet Evol 54:870-882, 2010) and wing ecomorphology by Outomuro et al. (in J Evol Biol 26:1866-1874, 2013). However, the latter investigation employed a somewhat coarse sampling of forewing and hindwing outlines and reported results that were at odds in some ways with expectations given the mapping of landscape and water-body preference over the Trithemis cladogram produced by Damm et al. (in Mol Phylogenet Evol 54:870-882, 2010). To further explore the link between species-specific wing shape variation and habitat we studied a new sample of 27 Trithemis species employing a more robust statistical test for phylogenetic covariation, more comprehensive representations of Trithemis wing morphology and a wider range of morphometric data-analysis procedures. RESULTS: Contrary to the Outomuro et al. (in J Evol Biol 26:1866-1874, 2013) report, our results indicate that no statistically significant pattern of phylogenetic covariation exists in our Trithemis forewing and hindwing data and that both male and female wing datasets exhibit substantial shape differences between species that inhabit open and forested landscapes and species that hunt over temporary/standing or running water bodies. Among the morphometric analyses performed, landmark data and geometric morphometric data-analysis methods yielded the worst performance in identifying ecomorphometric shape distinctions between Trithemis habitat guilds. Direct analysis of wing images using an embedded convolution (deep learning) neural network delivered the best performance. Bootstrap and jackknife tests of group separations and discriminant-function stability confirm that our results are not artifacts of overtrained discriminant systems or the "curse of dimensionality" despite the modest size of our sample. CONCLUSION: Our results suggest that Trithemis wing morphology reflects the environment's "push" to a much greater extent than phylogeny's "pull". In addition, they indicate that close attention should be paid to the manner in which morphologies are sampled for morphometric analysis and, if no prior information is available to guide sampling strategy, the sample that most comprehensively represents the morphologies of interest should be obtained. In many cases this will be digital images (2D) or scans (3D) of the entire morphology or morphological feature rather than sparse sets of landmark/semilandmark point locations

Mamat,N., K.Yazawa, K.Numata, and Y.Norma-Rashid. 2018. Morphological and mechanical properties of flexible resilin joints on damselfly wings (Rhinocypha spp.). PLoS.One. 13:e0193147.
Abstract: Resilin functions as an elastic spring that demonstrates extraordinary extensibility and elasticity. Here we use combined techniques, laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM) to illuminate the structure and study the function of wing flexibility in damselflies, focusing on the genus Rhinocypha. Morphological studies using LSCM and SEM revealed that resilin patches and cuticular spikes were widespread along the longitudinal veins on both dorsal and ventral wing surfaces. Nanoindentation was performed by using atomic force microscopy (AFM), where the wing samples were divided into three sections (membrane of the wing, mobile and immobile joints). The resulting topographic images revealed the presence of various sizes of nanostructures for all sample sections. The elasticity range values were: membrane (0.04 to 0.16 GPa), mobile joint (1.1 to 2.0 GPa) and immobile joint (1.8 to 6.0 GPa). The elastomeric and glycine-rich biopolymer, resilin was shown to be an important protein responsible for the elasticity and wing flexibility

Maneechan, W., Prommi, T.O., 2022. Occurrence of microplastics in edible aquatic insect Pantala sp. (Odonata: Libellulidae) from rice fields. PeerJ. 10, e12902.
Abstract: BACKGROUND: Microplastic (MP) contamination has been discovered in aquatic systems throughout the world. They are well known as contaminants in aquatic species, but there is a gap in understanding about pathways of MP contamination into humans (i.e., through aquatic animals). The goal of this study is to assess MP contamination in an edible aquatic insect (Pantala sp.) living in rice fields. METHODS: A dragonfly larva, Pantala sp. (Odonata: Libellulidae), was tested for MPs. The study concentrated on three distinct anatomical compartments (whole body, gastrointestinal tract, and body without gastrointestinal tract), each of which was examined separately. For the physical identification and chemical analysis of MPs, a stereomicroscope and a Fourier transformed infrared spectroscope (FT-IR) were used, respectively. RESULTS AND DISCUSSION: The microplastics content was 121 in the whole body, 95 in the gastrointestinal tract, and 66 in the body without the gastrointestinal tract, with an average of 1.34 +/- 1.11, 1.06 +/- 0.77, and 0.73 +/- 0.51 abundance/ individual, respectively. The most common MPs discovered during this study were fragments, followed by fibers and rods. The chemical analysis by FT-IR confirmed three different polymers, including polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polypropylene (PP). There was no significant difference in MP abundances among the sample types (Kruskal-Wallis chi-squared = 2.774, df = 2, p = 0.250). The findings suggest that eating an edible aquatic insect (Odonata: Pantala sp.) could be one way for humans to ingest MPs

Martinez-Lendech, N., Osorio-Beristain, M., Franco, B., Pedraza-Reyes, M., Obregon, A., Contreras-Garduno, J., 2019. Does juvenile hormone prompt oxidative stress in male damselflies? J. Exp. Biol. 222.
Abstract: In invertebrates, it has recently been reported that secondary sexual characteristics (SSCs) reflect the antioxidant defense of their bearers, but it is not known what physiological link maintains the honesty of those signals. Here, we used the damselfly Hetaerina americana to test whether juvenile hormone plays such a role. First, we analyzed whether oxidative damage is a real threat in natural damselfly populations by examining the accumulation of oxidized guanines as a function of age in males. Then, we injected paraquat (a pro-oxidant agent) and added the juvenile hormone analog methoprene (JHa) to the experimental group and the JHa vehicle (acetone) to the control group, to determine whether JHa increases the levels of pro-oxidants and antioxidants. We found that DNA oxidation increased with age, and that levels of hydrogen peroxide and superoxide dismutase, but not catalase or glutathione, were elevated in the JHa group compared with the control group. We propose that juvenile hormone is a mediator of the relationship between SSCs and antioxidant capacity and, based on the literature, we know that JHa suppresses the immune response. We therefore suggest that juvenile hormone is a molecular mediator of the general health of males, which is reflected in their SSCs

Matushkina, N., Lambret, P., Gorb, S., 2016. Keeping the golden mean: plant stiffness and anatomy as proximal factors driving endophytic oviposition site selection in a dragonfly. Zoology (Jena.) 119, 474-480.
Abstract: Oviposition site selection is a crucial component of habitat selection in dragonflies. The presence of appropriate oviposition plants at breeding waters is considered to be one of the key habitat determinants for species laying eggs endophytically. Thus, Lestes macrostigma, a species which is regarded as threatened in Europe because of its highly disjunct distribution, typically prefers to lay eggs in the sea club rush Bolboschoenus maritimus. However, little is known about how the anatomical and mechanical properties of plant tissues determine the choice of L. macrostigma females. We examined green shoots of six plant species used by L. macrostigma for oviposition, either in the field (actual oviposition plants) or under experimental conditions (potential oviposition plants), to analyse anatomical and mechanical properties of shoots in a framework of known preferences regarding plant substrates for oviposition. As expected, the anatomy of shoots differed between representatives of two plant families, Cyperaceae and Juncaceae, most essentially in the distribution of supporting bundles and the presence of large aeriferous cavities that may affect egg placing within a shoot. The force necessary to puncture the tested plant samples ranged from 360 to 3298 mN, and their local stiffness ranged from 777 to 3363N/m. We show that the shoots of B. maritimus, the plant most preferred by L. macrostigma, have intermediate characteristics regarding both the stiffness and specific anatomical characteristics. The bending stiffness of the ovipositor in L. macrostigma was estimated as 1414N/m, one of the highest values recorded for zygopteran dragonflies so far. The ecological and behavioural implications of plant choice mechanisms in L. macrostigma are discussed in the context of the disjunct distribution of this species

Mauffray, W.F., Tennessen, K.J., 2019. A Catalogue and Historical Study of the Odonata of Ecuador. Zootaxa. 4628,  zootaxa.
Abstract: We present a list of 425 valid Odonata species from Ecuador, providing a brief overview of each genus, a photograph of a representative species of each genus, and all records known to us for each species. Thirty-eight of the 425 species were previously unrecorded from Ecuador. Data were derived from published records, public and private collections, and field records accumulated since the 1960's by the authors and others who have contributed specimen information to this study. A historical study and a comprehensive list of synonyms are presented, and questionable species records are discussed. The physiography of the country, including the general climate of each subregion and current pressures on the environment, is briefly discussed. At present, 44 species of Odonata are considered endemic to Ecuador, and eight species are considered endangered, vulnerable, or near threatened on the IUCN Red List

May, M., 1995. Dependence of flight behavior and heat production on air temperature in the green darner dragonfly Anax junius (Odonata: Aeshnidae). J. Exp. Biol. 198, 2385-2392.
Abstract: The large, endothermic dragonfly Anax junius regulates the temperatures of its thorax (Tth) and head (Th) during flight. At high ambient temperature (Ta) it is able to dispose of excess heat from the thorax by increasing hemolymph circulation to the abdomen, but recent evidence suggests that heat loss to the abdomen is largely passive at Ta<30 &deg;C. Nevertheless, these insects continue to regulate Tth and Th at least down to 20 &deg;C and probably at much lower values of Ta. As Ta declines, A. junius glide less, probably fly faster when feeding, and increase their wingbeat frequency when patrolling. Presumably as a result of these behavioral changes, heat production, and thus inferred flight metabolic rate, is inversely proportional to Ta. This is the first demonstration based on field data that an insect regulates body temperature while flying by altering heat production

May, M., 1995. Simultaneous control of head and thoracic temperature by the green darner dragonfly Anax junius (Odonata: Aeshnidae). J. Exp. Biol. 198, 2373-2384.
Abstract: Anax junius is a large dragonfly that regulates thoracic temperature (Tth) during flight. This species, like several other intermittently endothermic insects, achieves control of Tth at least in part by increasing circulation of hemolymph to the abdomen at high air temperature (Ta), thus facilitating heat loss from the thorax. In this paper, I demonstrate that heat transfer to the head is also under active control, very probably owing to temperature-sensitive alteration of hemolymph circulation. As a result, head temperature (Th) is strikingly elevated above Ta during endothermic warm-up and flight. Furthermore, during unrestrained flight in the field, Th is regulated actively by increasing hemolymph circulation from the warm thorax at low Ta. Concurrent measurements of abdominal temperature (Tab) confirm that the abdomen is used as a 'thermal window' at Ta>30 &deg;C but apparently not at lower Ta; thus, some additional mechanism(s) must exist for regulation of Tth at low Ta

May, M.L., 2019. Odonata: Who They Are and What They Have Done for Us Lately: Classification and Ecosystem Services of Dragonflies. Insects. 10.
Abstract: Odonata (dragonflies and damselflies) are well-known but often poorly understood insects. Their phylogeny and classification have proved difficult to understand but, through use of modern morphological and molecular techniques, is becoming better understood and is discussed here. Although not considered to be of high economic importance, they do provide esthetic/spiritual benefits to humans, and may have some impact as predators of disease vectors and agricultural pests. In addition, their larvae are very important as intermediate or top predators in many aquatic ecosystems. More recently, they have been the objects of study that have yielded new information on the mechanics and control of insect flight.

May ML, Gregoire JA, Gregoire SM, Lubertazzi MA, Matthews JH. 2017. Emergence phenology, uncertainty, and the evolution of migratory behavior in Anax junius (Odonata: Aeshnidae). PLoS One 12:e0183508.
Abstract: Mass migrations by Odonata, although less studied than those of Monarch butterflies and plague locusts, have provoked comment and study for many years. Relatively recently, increasing interest in dragonflies, supported by new technologies, has resulted in more detailed knowledge of the species involved, behavioral mechanisms, and geographic extent. In this paper we examine, in four independent but complementary studies, how larval habitat and emergence phenology interact with climate to shape the evolution of migratory strategy in Anax junius, a common species throughout much of the eastern United States and southern Canada. In brief, we argue that fish predation on larvae, coupled with the need for ample emergent vegetation for oviposition and adult eclosion, dictates that larval development and survival is optimal in ponds that are neither permanent nor extremely ephemeral. Coupled with annual variation in regional weather and winters in much of their range too cold for adult survival, conditions facing newly emerged A. junius may unpredictably favor either local reproduction or long-distance movement to more favorable areas. Both temperature and hydroperiod tend to favor local reproduction early in the adult activity period and migration later, so late emerging adults are more likely to migrate. No single pond is always predictably suitable or unsuitable, however, so ovipositing females also may spread the risk to their offspring by ovipositing at multiple sites that, for migrants, may be distributed over very long distances

McCauley, S.J., Davis, C.J., Werner, E.E., Robeson, M.S., 2014. Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies. J. Anim Ecol. 83, 858-865.
Abstract: Species' range sizes are shaped by fundamental differences in species' ecological and evolutionary characteristics, and understanding the mechanisms determining range size can shed light on the factors responsible for generating and structuring biological diversity. Moreover, because geographic range size is associated with a species' risk of extinction and their ability to respond to global changes in climate and land use, understanding these mechanisms has important conservation implications. Despite the hypotheses that dispersal behaviour is a strong determinant of species range areas, few data are available to directly compare the relationship between dispersal behaviour and range size. Here, we overcome this limitation by combining data from a multispecies dispersal experiment with additional species-level trait data that are commonly hypothesized to affect range size (e.g. niche breadth, local abundance and body size.). This enables us to examine the relationship between these species-level traits and range size across North America for fifteen dragonfly species. Ten models based on a priori predictions about the relationship between species traits and range size were evaluated and two models were identified as good predictors of species range size. These models indicated that only two species' level traits, dispersal behaviour and niche breadth were strongly related to range size. The evidence from these two models indicated that dragonfly species that disperse more often and further had larger North American ranges. Extinction and colonization dynamics are expected to be a key linkage between dispersal behaviour and range size in dragonflies. To evaluate how extinction and colonization dynamics among dragonflies were related to range size we used an independent data set of extinction and colonization rates for eleven dragonfly species and assessed the relationship between these populations rates and North American range areas for these species. We found a negative relationship between North American range size and species' extinction-to-colonization ratios. Our results indicate that metapopulation dynamics act to shape the extent of species' continental distributions. These population dynamics are likely to interact with dispersal behaviour, particularly at species range margins, to determine range limits and ultimately species range sizes

McCauley, S.J., Hammond, J.I., Frances, D.N., Mabry, K.E., 2015. Effects of experimental warming on survival, phenology and morphology of an aquatic insect (Odonata). Ecol. Entomol. 40, 211-220.
Abstract: 1. Organisms can respond to changing climatic conditions in multiple ways including changes in phenology, body size or morphology, and range shifts. Understanding how developmental temperatures affect insect life-history timing and morphology is crucial because body size and morphology affect multiple aspects of life history, including dispersal ability, while phenology can shape population performance and community interactions. 2. We experimentally assessed how developmental temperatures experienced by aquatic larvae affected survival, phenology, and adult morphology of dragonflies (Pachydiplax longipennis). Larvae were reared under 3 environmental temperatures: ambient, +2.5 degrees C, and +5 degrees C, corresponding to temperature projections for our study area 50 and 100 years in the future, respectively. Experimental temperature treatments tracked naturally-occurring variation. 3. We found clear effects of temperature in the rearing environment on survival and phenology: dragonflies reared at the highest temperatures had the lowest survival rates, and emerged from the larval stage approximately 3 weeks earlier than animals reared at ambient temperatures. There was no effect of rearing temperature on overall body size. Although neither the relative wing nor thorax size was affected by warming, a non-significant trend towards an interaction between sex and warming in relative thorax size suggests that males may be more sensitive to warming than females, a pattern that should be investigated further. 4. Warming strongly affected survival in the larval stage and the phenology of adult emergence. Understanding how warming in the developmental environment affects later life-history stages is critical to interpreting the consequences of warming for organismal performance.

McDevitt-Galles, T., Calhoun, D.M., Johnson, P.T.J., 2018. Parasite richness and abundance within aquatic macroinvertebrates: testing the roles of host- and habitat-level factors. Ecosphere. 9.
Abstract: The importance of parasites as both members of biological communities and as structuring agents of host communities has been increasingly emphasized. Yet parasites of aquatic macroinvertebrates and the environmental factors regulating their richness and abundance remain poorly studied. Here we quantified parasite richness and abundance within 12 genera of odonate naiads and opportunistically sampled four additional orders of aquatic macroinvertebrates from 35 freshwater ponds in the San Francisco Bay Area of California, USA. We also tested the relative contributions of host- and habitat-level factors in driving patterns of infection abundance for the most commonly encountered parasite (the trematode Haematoloechus sp.) in nymphal damselflies and dragonflies using hierarchical generalized linear mixed models. Over the course of two years, we quantified the presence and intensity of parasites from 1,612 individuals. We identified six parasite taxa: two digenetic trematodes, one larval nematode, one larval acanthocephalan, one gregarine, and a mite, for which the highest infection prevalence (39%) occurred in the damselfly genus, Ishnura sp. Based on the hierarchical analysis of Haematoloechus sp. occurrence, infection prevalence and abundance were associated predominantly with site-level factors, including definitive host (frog) presence, nymphal odonate density, water pH and conductivity. In addition, host suborder interacted with the presence of fishes, such that damselflies had higher infection rates in sites with fish relative to those without, whereas the opposite was true for dragonfly nymphs. These findings offer insights into the potential interaction between host- and site-level factors in shaping parasite populations within macroinvertebrate taxa.

McPeek,M.A., L.Shen, and H.Farid. 2009. The correlated evolution of three-dimensional reproductive structures between male and female damselflies. Evolution. 63:73-83.
Abstract: For many taxa, species are defined by the morphologies of reproductive structures. In many odonates, these structures are the cerci of males (used to hold females during mating) and the thoracic plates of females where the male cerci contact the females' bodies. A previous study showed that the shapes of cerci of Enallagma males (Zygoptera: Coenagrionidae) are best explained by an evolutionary model of punctuated change at the time of speciation, with a homogeneous rate of change across the entire phylogeny of the genus. In the present study, we examine the evolution of shape change in the corresponding female plates. We found that, like male cerci, the shapes of Enallagma female thoracic plates could best be explained by an evolutionary model of punctuated change at the time of speciation, with a homogeneous rate of change across the clade. Moreover, the evolutionary contrasts quantifying the rates of change in male cerci and female thoracic plates were positively related across the history of the clade, demonstrating that these male and female structures evolve in a correlated fashion. This pattern of evolution suggests that these structures are primary signals of species identity during mating

Mehmood, S.A., Zia, A., Ahmed, S., Panhwar, W.A., Khan, W., Shah, M., Ullah, I., 2020. Seasonal abundance and distribution of dragonflies in upper Siran valley of District Mansehra Pakistan. Braz. J. Biol.
Abstract: Present study was conducted to study seasonal abundance and distribution of dragonflies in upper Siran valley district Mansehra Pakistan. To collect data, eleven localities were visited for three consecutive years (2016-2018). Results come up with a sum of 300 specimens identified under three families, eight genera and twenty species. Highest seasonal abundance recorded during summer and spring were 80.67% and 13.33% respectively while minimum 6.00% was recorded during early autumn. Dominant species observed were, Orthetrum chrysis (14.00%), followed by O. gluacum (12.00%), Palpoleura sexmaculata sexmaculata (11.33%) and O. cancellatum cancellatum (8.00%). However the highest population of dragonflies was found in Munda Gucha with a percentage of 11.33 followed by Jabbar (11.00%) and Sachan (9.67%). The lowest populations were recorded in Suham (6.00%), Dadar (7.67%) and Jabori (7.67%). The surveyed valley showed diverse Anisopterous fauna and thus further extensive surveys are recommended that can come up with more important species from the area

Mendonca FZ, Bernardy JV, Oliveira CEK, Oliveira PBG, De MP. 2017. Temperature Effect on the Development of Tropical Dragonfly Eggs. Neotrop Entomol . https://doi.org/10.1007/s13744-017-0546-7.
Abstract: Physiological constraints in insects are related to several large-scale processes such as species distribution and thermal adaptation. Here, we fill an important gap in ecophysiology knowledge by accessing the relationship between temperature and embrionary development time in four dragonfly species. We evaluated two questions (1) what is the effect of temperature on the development time of Odonata eggs, and (2) considering a degree-day relationship, could a simple linear model describe the dependence of embrionary development time on temperature or it is better described by a more complex non-linear relation. Egg development time of Erythrodiplax fusca (Rambur), Micrathyria hesperis Ris, Perithemis mooma Kirby, and Miathyria simplex (Rambur) (Odonata: Libellulidae) were evaluated. We put the eggs at different temperatures (15, 20, 25, and 30 degrees C) and counted the number of hatched larvae daily. A nonlinear response of the development to the temperature was found, differing from the expected pattern for standard degree-day analysis. Furthermore, we observed that there is a similar process in the development time and hatching synchronization between species, with all species presenting faster egg development at high temperatures. Species-specific differences are more evident at lower temperatures (15 degrees C), with no egg development in M. simplex. Only E. fusca was relatively insensitive to temperature changes with similar hatching rates in all treatments

Meyer-Rochow, V.B., 2017. Therapeutic arthropods and other, largely terrestrial, folk-medicinally important invertebrates: a comparative survey and review. J. Ethnobiol. Ethnomed. 13, 9.
Abstract: Traditional healing methods involving hundreds of insect and other invertebrate species are reviewed. Some of the uses are based on the tenet of "similia similibus" (let likes be cured by likes), but not all non-conventional health promoting practices should be dismissed as superstition or wishful thinking, for they have stood the test of time. Two questions are addressed: how can totally different organ systems in a human possibly benefit from extracts, potions, powders, secretions, ashes, etc. of a single species and how can different target organs, e.g. bronchi, lungs, the urinary bladder, kidneys, etc. apparently respond to a range of taxonomically not even closely related species? Even though therapeutically used invertebrates are generally small, they nevertheless possess organs for specific functions, e.g. digestion, gas exchange, reproduction. They have a nervous system, endocrine glands, a heart and muscle tissue and they contain a multitude of different molecules like metabolites, enzymes, hormones, neurotransmitters, secretions, etc. that have come under increased scientific scrutiny for pharmacological properties. Bearing that in mind it seems likely that a single species prepared and used in different ways could have a multitude of uses. But how, for example, can there be remedies for breathing and other problems, involving earthworms, molluscs, termites, beetles, cockroaches, bugs, and dragonflies? Since invertebrates themselves can suffer from infections and cancers, common defence reactions are likely to have evolved in all invertebrates, which is why it would be far more surprising to find that each species had evolved its own unique disease fighting system. To obtain a more comprehensive picture, however, we still need information on folk medicinal uses of insects and other invertebrates from a wider range of regions and ethnic groups, but this task is hampered by western-based medicines becoming increasingly dominant and traditional healers being unable and sometimes even unwilling to transmit their knowledge to the younger generation. However, collecting and uncontrolled uses of therapeutic invertebrates can put undue pressure on certain highly sought after species and this is something that has to be borne in mind as well

Montalvao, M.F., Guimaraes, A.T.B., Rodrigues, A.S.L., Malafaia, G., 2021. Carbon nanofibers are bioaccumulated in Aphylla williamsoni (Odonata) larvae and cause REDOX imbalance and changes of acetylcholinesterase activity. Sci. Total Environ. 756, 143991.
Abstract: Carbon-based materials have been considered very promising for the technological industry due to their unique physical and chemical properties, namely: ability to reduce production costs and to improve the efficiency of several products. However, there is little information on what is the level of exposure that leads to adverse effects and what kind of effects is expected in aquatic biota. Thus, the aim of the present study was to evaluate the toxicity of carbon nanofibers (CNFs) in dragonfly larvae (Aphylla williamsoni) based on predictive oxidative-stress biomarkers, antioxidant activity reduction and neurotoxicity. After ephemeral models' exposure to CNFs (48 h; at 500 mug/L), data have shown that these pollutants did not change larvae's nutritional status given the concentration of total soluble carbohydrates, total proteins and triglycerides in them. However, the levels of both nitric oxide and substances reactive to thiobarbituric acid (lipid peroxidation indicators) have increased and the antioxidant activity based on total thiol levels and on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (%) has reduced, and it suggests REDOX imbalance induction by CNFs. In addition, larvae exposed to these pollutants showed significant acetylcholinesterase activity reduction in comparison to the control group. Thus, the present study has brought further knowledge about how carbon-based materials can affect benthic macroinvertebrates and emphasized their ecotoxicological potential in freshwater environments

Moore, M.P., Martin, R.A., 2016. Intrasexual selection favours an immune-correlated colour ornament in a dragonfly. J. Evol. Biol. 29, 2256-2265.
Abstract: Sexual signalling is predicted to shape the evolution of sex-specific ornamentation, and establishing the costs and benefits of ornamentation and the information that ornamentation provides to receivers is necessary to evaluating this adaptive function. Here, we assessed the adaptive function of a common colour ornament in insects, melanin wing ornamentation, using the dragonfly Pachydiplax longipennis. We hypothesized that greater ornamentation would improve territory-holding success by decreasing aggression that males receive from territorial rivals, but that more ornamented males may have shorter lifespans. Using mark-recapture field observations, we found that more ornamented males had greater territory-holding success and that viability selection did not act on wing melanization. We then compared the aggression of territorial rivals to decoy males before and after experimentally augmenting wing melanization, finding that males significantly reduced aggression following the manipulation. We next hypothesized that wing melanization would signal fighting ability to territorial rivals by reflecting condition via investment in the costly melanin synthesis pathway. We observed a positive relationship between ornamentation and the likelihood of winning territorial disputes, suggesting that wing melanization provides information about fighting ability to rivals. We also found a positive relationship between melanin-based immune defence and ornamentation, supporting a link between the signal and condition. We conclude that wing melanization is a condition-related signal of fighting ability and suggest that this may be a common mechanism promoting the evolution of melanin ornamentation

Moore, M.P., 2021. Larval habitats impose trait-dependent limits on the direction and rate of adult evolution in dragonflies. Biol. Lett. 17, 20210023.
Abstract: Natural selection on juveniles is often invoked as a constraint on adult evolution, but it remains unclear when such restrictions will have their greatest impact. Selection on juveniles could, for example, mainly limit the evolution of adult traits that mostly develop prior to maturity. Alternatively, selection on juveniles might primarily constrain the evolution of adult traits that experience weak or context-dependent selection in the adult stage. Using a comparative study of dragonflies, I tested these hypotheses by examining how a species' larval habitat was related to the evolution of two adult traits that differ in development and exposure to selection: adult size and male ornamentation. Whereas adult size is fixed at metamorphosis and experiences consistent positive selection in the adult stage, ornaments develop throughout adulthood and provide context-dependent fitness benefits. My results show that species that develop in less stable larval habitats have smaller adult sizes and slower rates of adult size evolution. However, these risky larval habitats do not limit ornament expression or rates of ornament evolution. Selection on juveniles may therefore primarily affect the evolution of adult traits that mostly develop prior to maturity

Moore, M. P. & Khan, F. (2023). Relatively large wings facilitate life at higher elevations among Nearctic dragonflies. J. Anim Ecol. 92, 1613-1621, doi:10.1111/1365-2656.13946 [doi].
Abstract: Determining which traits allow species to live at higher elevations is essential to understanding the forces that shape montane biodiversity. For the many animals that rely on flight for locomotion, a long-standing hypothesis is that species with relatively large wings should better persist in high-elevation environments because wings that are large relative to the body generate more lift and decrease the aerobic costs of remaining aloft. Although these biomechanical and physiological predictions have received some support in birds, other flying taxa often possess smaller wings at high elevations or no wings at all. To test if predictions about the requirements for relative wing size at high elevations are generalizable beyond birds, we conducted macroecological analyses on the altitudinal characteristics of 302 Nearctic dragonfly species. Consistent with the biomechanical and aerobic hypotheses, species with relatively larger wings live at higher elevations and have wider elevation breadths-even after controlling for a species' body size, mean thermal conditions, and range size. Moreover, a species' relative wing size had nearly as large of an impact on its maximum elevation as being adapted to the cold. Relatively large wings may be essential to high-elevation life in species that completely depend on flight for locomotion, like dragonflies or birds. With climate change forcing taxa to disperse upslope, our findings further suggest that relatively large wings could be a requirement for completely volant taxa to persist in montane habitats

Moore MP, Lis C, Martin RA. 2017. Larval body condition regulates predator-induced life-history variation in a dragonfly. Ecology, in press.
Abstract: Organisms with complex life cycles commonly exhibit adaptive plasticity in the timing of transitions between life stages. While the threat of predation is predicted to induce earlier transitions, empirical support has been equivocal. When predation risk affects both the propensity to transition to the next life stage and the ability to reach the energetic thresholds necessary to complete the transition, only those individuals in the best physiological condition may be able to accelerate development and emerge earlier. To test this hypothesis, we followed uniquely marked dragonfly larvae (Pachydiplax longipennis) through emergence in pools where we factorially manipulated the presence of a large heterospecific predator (Anax junius) and cannibalism risk via conspecific size variation. Consistent with our hypothesis, high-condition larvae were more likely to emerge in the presence of the heterospecific predator than in its absence, and low-condition larvae were more likely to emerge in its absence than in its presence. Moreover, high-condition larvae emerged earlier when cannibalism risk was high than when it was low. Predation risk therefore has condition-dependent effects on emergence. As predation risk frequently affects resource accumulation, similar mechanisms across taxa could commonly underlie the incongruence between empirical results and theoretical expectations for predator-induced life-history variation

Moore, M.P., Lis, C., Gherghel, I., Martin, R.A., 2019. Temperature shapes the costs, benefits and geographic diversification of sexual coloration in a dragonfly. Ecol. Lett. 22, 437-446.
Abstract: The environment shapes the evolution of secondary sexual traits by determining how their costs and benefits vary across the landscape. Given the thermal properties of dark coloration generally, temperature should crucially influence the costs, benefits and geographic diversification of many secondary sexual colour patterns. We tested this hypothesis using sexually selected wing coloration in a dragonfly. We find that greater wing coloration heats males - the magnitude of which improves flight performance under cool conditions but dramatically reduces it under warm conditions. In a colder region of the species' range, behavioural observations of a wild population show that these thermal effects translate into greater territorial acquisition on thermally variable days. Finally, geo-referenced photographs taken by citizen scientists reveal that this sexually selected wing coloration is dramatically reduced in the hottest portions of the species' range. Collectively, our results underscore temperature's capacity to promote and constrain the evolution of sexual coloration

Moore, M.P., Hersch, K., Sricharoen, C., Lee, S., Reice, C., Rice, P., Kronick, S., Medley, K.A., Fowler-Finn, K.D., 2021. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proc. Natl. Acad. Sci. U. S. A 118.
Abstract: Adaptation to different climates fuels the origins and maintenance of biodiversity. Detailing how organisms optimize fitness for their local climates is therefore an essential goal in biology. Although we increasingly understand how survival-related traits evolve as organisms adapt to climatic conditions, it is unclear whether organisms also optimize traits that coordinate mating between the sexes. Here, we show that dragonflies consistently adapt to warmer climates across space and time by evolving less male melanin ornamentation-a mating-related trait that also absorbs solar radiation and heats individuals above ambient temperatures. Continent-wide macroevolutionary analyses reveal that species inhabiting warmer climates evolve less male ornamentation. Community-science observations across 10 species indicate that populations adapt to warmer parts of species' ranges through microevolution of smaller male ornaments. Observations from 2005 to 2019 detail that contemporary selective pressures oppose male ornaments in warmer years; and our climate-warming projections predict further decreases by 2070. Conversely, our analyses show that female ornamentation responds idiosyncratically to temperature across space and time, indicating the sexes evolve in different ways to meet the demands of the local climate. Overall, these macro- and microevolutionary findings demonstrate that organisms predictably optimize their mating-related traits for the climate just as they do their survival-related traits

Moore, M. P., Nalley, S. E., & Hamadah, D. (2024). An evolutionary innovation for mating facilitates ecological niche expansion and buffers species against climate change. Proc. Natl. Acad. Sci. U. S. A 121, e2313371121, doi:10.1073/pnas.2313371121 [doi].
Abstract: One of the drivers of life's diversification has been the emergence of "evolutionary innovations": The evolution of traits that grant access to underused ecological niches. Since ecological interactions can occur separately from mating, mating-related traits have not traditionally been considered factors in niche evolution. However, in order to persist in their environment, animals need to successfully mate just as much as they need to survive. Innovations that facilitate mating activity may therefore be an overlooked determinant of species' ecological limits. Here, we show that species' historical niches and responses to contemporary climate change are shaped by an innovation involved in mating-a waxy, ultra-violet-reflective pruinescence produced by male dragonflies. Physiological experiments in two species demonstrate that pruinescence reduces heating and water loss. Phylogenetic analyses show that pruinescence is gained after taxa begin adopting a thermohydrically stressful mating behavior. Further comparative analyses reveal that pruinose species are more likely to breed in exposed, open-canopy microhabitats. Biogeographic analyses uncover that pruinose species occupy warmer and drier regions in North America. Citizen-science observations of Pachydiplax longipennis suggest that the extent of pruinescence can be optimized to match the local conditions. Finally, temporal analyses indicate that pruinose species have been buffered against contemporary climate change. Overall, these historical and contemporary patterns show that successful mating can shape species' niche limits in the same way as growth and survival

Mourao, M.A., Peixoto, P.E., 2014. Do morphological and physiological characteristics of males of the dragonfly Macrothemis imitans determine the winner of territorial contests? J. Insect Sci. 14, 89.
Abstract: Males of many animal species show intraspecific disputes for mating territories that range from displays without physical contact to physical fights with risk of injury. This variation motivated the proposition of different models that suggest possible rules used by rivals to decide the contest winner. To evaluate those models, it is necessary to identify how males behave during the fight and the individual attributes that determine their fighting ability (resource holding potential). For this, males of the dragonfly Macrothemis imitans (Karsch) (Odonata: Libellulidae) were used to evaluate two hypotheses conditioned on the occurrence of physical contact during the fight: if the contests occur with physical contact, features related to size should determine male resource holding potential, and if males do not exhibit physical contact during the contests, features that confer greater endurance should determine resource holding potential. To assess these hypotheses, we collected males that had ownership of territories (resident males) and males that occupied the territory after we removed the resident males (substitute males). After the capture, the resident and substitute males were transferred to the laboratory for measurements of wing area, dry weight, thoracic muscle mass, and fat content. The results showed that resident males do not differ in any measured trait from substitutes. Because the fights occur with physical contact, it is intriguing that resident males do not possess higher fighting capacity than intruders. Perhaps physical contact does not incur high costs during the fight, and other asymmetries, such as motivation associated with prior residency of the disputed territory, determine the contest winner.

Nagano, K., Hiraiwa, M. K., Ishiwaka, N., Seko, Y., Hashimoto, K., Uchida, T., Sanchez-Bayo, F., & Hayasaka, D. (2023). Global warming intensifies the interference competition by a poleward-expanding invader on a native dragonfly species. R. Soc. Open. Sci. 10, 230449, doi:rsos230449 [pii];10.1098/rsos.230449 [doi].
Abstract: Rapid climate warming has boosted biological invasions and the distribution or expansion polewards of many species: this can cause serious impacts on local ecosystems within the invaded areas. Subsequently, native species may be exposed to threats of both interspecific competition with invaders and temperature rises. However, effects of warming on interspecific interactions, especially competition between invader and native species remains unclear. To better understand the combined threats of biological invasions and warming, the effect of temperature on competitive interactions between two dragonfly species, the expanding Trithemis aurora from Southeast Asia and the Japanese native Orthetrum albistylum speciosum were assessed based on their foraging capacity. Although the stand-alone effect of temperature on foraging intake of the native dragonfly was not apparent, its intake significantly decreased with increasing temperatures when the invader T. aurora was present. Such reductions in foraging might lead to displacement of the native species through competition for food resources. This suggests that impacts of invader species against native species are expected to be more severe when interspecific competition is exacerbated by temperature rises

Nakanishi, K., Yokomizo, H., Hayashi, T.I., 2018. Were the sharp declines of dragonfly populations in the 1990s in Japan caused by fipronil and imidacloprid? An analysis of Hill's causality for the case of Sympetrum frequens. Environ. Sci. Pollut. Res. Int. 25, 35352-35364.
Abstract: Neonicotinoids and fipronil are the most widely used insecticides in the world. Previous studies showed that these compounds have high toxicity to a wide taxonomic range of non-target invertebrates. In rice cultivation, they are frequently used for nursery-box treatment of rice seedlings. The use of fipronil and neonicotinoid imidacloprid is suspected to be the main cause of population declines of red dragonflies, in particular Sympetrum frequens, because they have high lethal toxicity to dragonfly nymphs and the timing of the insecticides' introduction in Japan (i.e., the late 1990s) overlapped with the sharp population declines. However, a causal link between application of these insecticides and population declines of the dragonflies remains unclear. Therefore, we estimated the amount of the insecticides applied for nursery-box treatment of rice seedlings and analyzed currently available information to evaluate the causality between fipronil and imidacloprid usage and population decline of S. frequens using Hill's causality criteria. Based on our scoring of Hill's nine criteria, the strongest lines of evidence were strength, plausibility, and coherence, whereas the weakest were temporality and biological gradient. We conclude that the use of these insecticides, particularly fipronil, was a major cause of the declines of S. frequens in Japan in the 1990s, with a high degree of certainty. The existing information and our analyses, however, do not allow us to exclude the possibility that some agronomic practices (e.g., midsummer drainage or crop rotation) that can severely limit the survival of aquatic nymphs also played a role in the dragonfly's decline.

Nakanishi, K., Ueda, T., Yokomizo, H., Hayashi, T.I., 2020. Effects of systemic insecticides on the population dynamics of the dragonfly Sympetrum frequens in Japan: Statistical analyses using field census data from 2009 to 2016. Sci. Total Environ. 703, 134499.
Abstract: Since the mid-1990s, populations of the common Japanese dragonfly Sympetrum frequens in rice fields have declined severely. Application of systemic insecticides-especially fipronil-to nursery boxes of rice seedlings is suspected to be the main cause of the decline. However, until now there have been insufficient population data to test the causality. We conducted a dragonfly survey from 2009 to 2016 in four prefectures of Japan and compiled the data to enable the comparison of population growth rates along five main census routes over the years. We also estimated the use ratio of each insecticide applied to nursery boxes in rice fields (i.e., the area exposed to insecticide as a ratio of the total rice field area) by prefecture. We then statistically analyzed the effects of the insecticides on the dragonfly's population growth rates, taking into account the potential confounding factors based on current knowledge. There was a significant negative association between the annual increase in use ratio of the sum of systemic insecticides (e.g., fipronil, imidacloprid, and chlorantraniliprole) and the annual population growth rate of S. frequens. This association suggests that systemic insecticide use affected the decrease in population density of the dragonfly, although some agronomic factors need to be further examined as potential confounders

Nakanishi, K., Koide, D., Yokomizo, H., Kadoya, T., Hayashi, T.I., 2020. Investigating effect of climate warming on the population declines of Sympetrum frequens during the 1990s in three regions in Japan. Sci. Rep. 10, 12719.
Abstract: Climate warming is of concern as a key factor in the worldwide decline in insect populations. In Japan, numbers of a common dragonfly in rice paddy fields, Sympetrum frequens, decreased sharply in the 1990s. Because S. frequens migrates to cooler mountains in summer, climate warming has been suggested as one of the main causes of the population decline in addition to agronomic factors. Here, we analysed the relation between summer temperatures and population densities of S. frequens and the related S. infuscatum, which does not migrate to mountains in summer, using published population monitoring data and temperature data from three regions (Toyama, Ishikawa, and Shizuoka) in Japan. Decadal differences in summer temperatures lay within the range of fluctuations among years, suggesting that an increase in summer temperatures cannot explain the past sharp population declines. However, regression analyses using monitoring data from Toyama showed that the population dynamics of both species in autumn are negatively correlated with summer temperatures in the same year. These results suggest that high temperatures in summer directly affect adult mortality to an extent that results in a decrease in population growth

Nakanishi, K., Yokomizo, H., Hayashi, T.I., 2021. Population model analyses of the combined effects of insecticide use and habitat degradation on the past sharp declines of the dragonfly Sympetrum frequens. Sci. Total Environ. 787, 147526.
Abstract: In recent decades, many dragonfly species have become threatened with extinction. For example, populations of Sympetrum frequens, one of the most common dragonflies in rice paddy fields in Japan, decreased sharply around the late 1990s in many regions. Although previous studies suggested that the use of systemic insecticides (particularly fipronil) was likely a major cause of the decline, agronomic factors other than insecticide use and the combined effects of both have been not examined. Here, we developed an S. frequens population model using survival rate parameters associated with the farmland consolidation rate, midsummer drainage, area of crop rotation and abandoned rice paddies, insecticide use, and summer temperature and analyzed the effects of each factor on population dynamics by numerical simulations. Our population models substantially reproduced the past sharp population declines of the dragonfly in three regions. Numerical simulations using hypothetical parameters did not always suggest that the use of systemic insecticides is a sufficient cause of the sharp population declines, as the declines did not occur if the farmland consolidation rate remained at lower levels (before the 1980s). On the other hand, our findings suggest that the use of insecticides with high toxicity is a necessary cause of the sharp population declines, as the declines did not occur when simulated toxicity levels were lower than those actually used. Overall, our numerical simulations suggest that the sharp population declines of S. frequens around the late 1990s were caused by the combined effects of insecticide use and farmland consolidation, in which rice paddies are converted to well-drained paddy fields. Conservation planning for dragonflies needs to account for the combined effects of habitat degradation and use of insecticides

Nasirian H, Irvine KN. 2017. Odonata larvae as a bioindicator of metal contamination in aquatic environments: application to ecologically important wetlands in Iran. Environ Monit Assess 189:436.
Abstract: The objectives of this study were twofold: (i) assess the bioaccumulation characteristics of a suite of metals associated with several different species of Odonata and (ii) examine Odonata species richness as a reflection of ecosystem health in two ecologically important wetlands of southwestern Iran, the Shadegan and Hawr Al Azim wetlands. Levels of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), lead (Pb), and zinc (Zn) were determined using inductively coupled plasma optical emission spectrometry (ICP-OES) in nine different Odonata larva species. Based on these data, biota-sediment accumulation factors (BSAFs) were calculated and generally, it was found that Cr, Cu, Mn, and Zn were being taken up by the Odonata (BSAFs >1). Because of its prevalence in the wetland and its observed ability to take up metals, it is suggested that Ischnura ramburii is an appropriate indicator of ecosystem health for these wetlands with respect to metal contamination. Odonata species richness across all sites was 49, while for the individual sites, the greatest species richness was 26 and the lowest species richness was 13. The species richness value across all sites is quite healthy, given the arid climate of the region.

Neale, Z. & Rudolf, V. H. W. (2023). Predation and competition drive trait diversity across space and time. Ecology. 104, e4182, doi:10.1002/ecy.4182 [doi].
Abstract: Competition should play a key role in shaping community assembly and thereby local and regional biodiversity patterns. However, identifying its relative importance and effects in natural communities is challenging because theory suggests that competition can lead to different and even opposing patterns depending on the underlying mechanisms. Here, we have taken a different approach: rather than attempting to indirectly infer competition from diversity patterns, we compared trait diversity patterns in odonate (dragonfly and damselfly) communities across different spatial and temporal scales along a natural competition-predation gradient. At the local scale (within a community), we found that trait diversity increased with the size of top predators (from invertebrates to fish). This relationship is consistent with differences in taxonomic diversity, suggesting that competition reduces local trait diversity through competitive exclusion. Spatial (across communities) and temporal (within communities over time) trait variation peaked in communities with intermediate predators indicating that both high levels of competition or predation select for trait convergence of communities. This indicates that competition acts as a deterministic force that reduces trait diversity at the local, regional, and temporal scales, which contrasts with patterns at the taxonomic level. Overall, results from this natural experiment reveal how competition and predation interact to shape biodiversity patterns in natural communities across spatial and temporal scales and provide new insights into the underlying mechanisms

Nel, A., Prokop, J., Pecharova, M., Engel, M.S., Garrouste, R., 2018. Palaeozoic giant dragonflies were hawker predators. Sci. Rep. 8, 12141.
Abstract: The largest insects to have ever lived were the giant meganeurids of the Late Palaeozoic, ancient stem relatives of our modern dragonflies. With wingspans up to 71 cm, these iconic insects have been the subject of varied documentaries on Palaeozoic life, depicting them as patrolling for prey through coal swamp forests amid giant lycopsids, and cordaites. Such reconstructions are speculative as few definitive details of giant dragonfly biology are known. Most specimens of giant dragonflies are known from wings or isolated elements, but Meganeurites gracilipes preserves critical body structures, most notably those of the head. Here we show that it is unlikely it thrived in densely forested environments where its elongate wings would have become easily damaged. Instead, the species lived in more open habitats and possessed greatly enlarged compound eyes. These were dorsally hypertrophied, a specialization for long-distance vision above the animal in flight, a trait convergent with modern hawker dragonflies. Sturdy mandibles with acute teeth, strong spines on tibiae and tarsi, and a pronounced thoracic skewness are identical to those specializations used by dragonflies in capturing prey while in flight. The Palaeozoic Odonatoptera thus exhibited considerable morphological specializations associated with behaviours attributable to 'hawkers' or 'perchers' among extant Odonata.

Nelson, S.J., Chen, C.Y., Kahl, J.S., 2019. Dragonfly larvae as biosentinels of Hg bioaccumulation in Northeastern and Adirondack lakes: relationships to abiotic factors. Ecotoxicology.
Abstract: Mercury (Hg) is a toxic pollutant, widespread in northeastern US ecosystems. Resource managers' efforts to develop fish consumption advisories for humans and to focus conservation efforts for fish-eating wildlife are hampered by spatial variability. Dragonfly larvae can serve as biosentinels for Hg given that they are widespread in freshwaters, long-lived, exhibit site fidelity, and bioaccumulate relatively high mercury concentrations, mostly as methylmercury (88% +/- 11% MeHg in this study). We sampled lake water and dragonfly larvae in 74 northeastern US lakes that are part of the US EPA Long-Term Monitoring Network, including 45 lakes in New York, 43 of which are in the Adirondacks. Aqueous dissolved organic carbon (DOC) and total Hg (THg) were strongly related to MeHg in lake water. Dragonfly larvae total mercury ranged from 0.016-0.918 mug/g, dw across the study area; Adirondack lakes had the minimum and maximum concentrations. Aqueous MeHg and dragonfly THg were similar between the Adirondack and Northeast regions, but a majority of lakes within the highest quartile of dragonfly THg were in the Adirondacks. Using landscape, lake chemistry, and lake morphometry data, we evaluated relationships with MeHg in lake water and THg in dragonfly larvae. Lakewater DOC and lake volume were strong predictors for MeHg in water. Dragonfly THg Bioaccumulation Factors (BAFs, calculated as [dragonfly THg]:[aqueous MeHg]) increased as lake volume increased, suggesting that lake size influences Hg bioaccumulation or biomagnification. BAFs declined with increasing DOC, supporting a potential limiting effect for MeHg bioavailability with higher DOC

Newton, L., Tolman, E., Kohli, M., & Ware, J. L. (2023). Evolution of Odonata: genomic insights. Curr. Opin. Insect Sci. 58, 101073, doi:S2214-5745(23)00070-6 [pii];10.1016/j.cois.2023.101073 [doi].
Abstract: Odonata is an order of insects that comprises approximately 6500 species. They are among the earliest flying insects, and one of the first diverging lineages in the Pterygota. Odonate evolution has been a topic of research for over 100 years, with studies focusing primarily on their flight behavior, color, vision, and aquatic juvenile lifestyles. Recent genomics studies have provided new interpretations about the evolution of these traits. In this paper, we look at how high-throughput sequence data (i.e. subgenomic and genomic data) have been used to answer long-standing questions in Odonata ranging from evolutionary relationships to vision evolution to flight behavior. Additionally, we evaluate these data at multiple taxonomic levels (i.e. ordinal, familial, generic, and population) and provide comparative analysis of genomes across Odonata, identifying features of these new data. Last, we discuss the next two years of Odonata genomic study, with context about what questions are currently being tackled

Nilsson-Ortman V, Johansson F. 2017. The Rate of Seasonal Changes in Temperature Alters Acclimation of Performance under Climate Change. Am Nat 190:743-761.
Abstract: How the ability to acclimate will impact individual performance and ecological interactions under climate change remains poorly understood. Theory predicts that the benefit an organism can gain from acclimating depends on the rate at which temperatures change relative to the time it takes to induce beneficial acclimation. Here, we present a conceptual model showing how slower seasonal changes under climate change can alter species' relative performance when they differ in acclimation rate and magnitude. To test predictions from theory, we performed a microcosm experiment where we reared a mid- and a high-latitude damselfly species alone or together under the rapid seasonality currently experienced at 62 degrees N and the slower seasonality predicted for this latitude under climate change and measured larval growth and survival. To separate acclimation effects from fixed thermal responses, we simulated growth trajectories based on species' growth rates at constant temperatures and quantified how much and how fast species needed to acclimate to match the observed growth trajectories. Consistent with our predictions, the results showed that the midlatitude species had a greater capacity for acclimation than the high-latitude species. Furthermore, since acclimation occurred at a slower rate than seasonal temperature changes, the midlatitude species had a small growth advantage over the high-latitude species under the current seasonality but a greater growth advantage under the slower seasonality predicted for this latitude under climate change. In addition, the two species did not differ in survival under the current seasonality, but the midlatitude species had higher survival under the predicted climate change scenario, possibly because rates of cannibalism were lower when smaller heterospecifics were present. These findings highlight the need to incorporate acclimation rates in ecological models

Nilsson-Ortman, V., Stoks, R., De, B.M., Johansson, F., 2012. Generalists and specialists along a latitudinal transect: patterns of thermal adaptation in six species of damselflies. Ecology. 93, 1340-1352.
Abstract: Tropical organisms colonizing temperate environments face reduced average temperatures and dramatic thermal fluctuations. Theoretical models postulate that thermal specialization should be favored either when little environmental variation is experienced within generations or when among-generation variation is small relative to within-generation variation. To test these predictions, we studied six temperate species of damselflies differing in latitudinal distribution. We developed a computer model simulating how organisms experience environmental variation (accounting for diapause and voltinism) and performed a laboratory experiment assaying thermal sensitivities of growth rates. The computer model showed opposing latitudinal trends in among- and within-generation thermal variability: within-generation thermal variability decreased toward higher latitudes, whereas relative levels of among-generation thermal variability peaked at midlatitudes (where a shift in voltinism occurred). The growth experiment showed that low-latitude species were more thermally generalized than mid- and high-latitude species, supporting the prediction that generalists are favored under high levels of within-generation variation. Northern species had steeper, near-exponential reaction norms suggestive of thermal specialization. However, they had strikingly high thermal optima and grew very slowly over most of the thermal range they are expected to experience in the field. This observation is at present difficult to explain. These results highlight the importance of considering interactions between life history and environmental variation when deriving expectations of thermal adaptation

Nobles, S., Jackson, C.R., 2020. Effects of Life Stage, Site, and Species on the Dragonfly Gut Microbiome. Microorganisms. 8.
Abstract: Insects that undergo metamorphosis from juveniles to adults provide an intriguing opportunity to examine the effects of life stage, species, and the environment on their gut microbiome. In this study, we surveyed the gut microbiomes of 13 species of dragonfly collected from five different locations subject to different levels of human impact. Juveniles were collected as nymphs from aquatic habitats while airborne adults were caught at the same locations. The gut microbiome was characterized by next generation sequencing of the bacterial 16S rRNA gene. Life stage was an important factor, with the gut microbiomes of dragonfly nymphs differing from those of adult dragonflies. Gut microbiomes of nymphs were influenced by sample site and, to a lesser extent, host species. Neither sample location nor host species had a strong effect on the gut microbiome of dragonfly adults. Regardless of life stage, gut microbiomes were dominated by members of the Proteobacteria, with members of the Bacteroidetes (especially in adults), Firmicutes, and Acidobacteria (especially in nymphs) also being proportionally abundant. These results demonstrate that different life stages of metamorphosing insects can harbor very different gut microbiomes and differ in how this microbiome is influenced by the surrounding environment

Novella-Fernandez, R., Brandl, R., Pinkert, S., Zeuss, D., & Hof, C. (2023). Seasonal variation in dragonfly assemblage colouration suggests a link between thermal melanism and phenology. Nat. Commun. 14, 8427, doi:10.1038/s41467-023-44106-0 [pii];44106 [pii];10.1038/s41467-023-44106-0 [doi].
Abstract: Phenology, the seasonal timing of life events, is an essential component of diversity patterns. However, the mechanisms involved are complex and understudied. Body colour may be an important factor, because dark-bodied species absorb more solar radiation, which is predicted by the Thermal Melanism Hypothesis to enable them to thermoregulate successfully in cooler temperatures. Here we show that colour lightness of dragonfly assemblages varies in response to seasonal changes in solar radiation, with darker early- and late-season assemblages and lighter mid-season assemblages. This finding suggests a link between colour-based thermoregulation and insect phenology. We also show that the phenological pattern of dragonfly colour lightness advanced over the last decades. We suggest that changing seasonal temperature patterns due to global warming together with the static nature of solar radiation may drive dragonfly flight periods to suboptimal seasonal conditions. Our findings open a research avenue for a more mechanistic understanding of phenology and spatio-phenological impacts of climate warming on insects

Oelmann, Y., Fiedler, D., Michaelis, R., Leivits, M., Braun, A., Gschwind, P., Neidhardt, H., & Willigalla, C. (2023). Autumn migration of the migrant hawker (Aeshna mixta) at the Baltic coast. Mov Ecol. 11, 52, doi:10.1186/s40462-023-00415-z [pii];415 [pii];10.1186/s40462-023-00415-z [doi].
Abstract: BACKGROUND: Migratory insects are important for the provision of ecosystem services both at the origin and destination sites but - apart from some iconic species - the migration routes of many insect species have not been assessed. Coastlines serve as a funnel where migrating animals including insects accumulate. Migratory behaviour and captures of dragonflies in bird traps suggest autumn migration of dragonflies along coastlines while the origin and regularity of this migration remain unclear. METHODS: Dragonfly species were caught at the bird observatory Kabli at the Baltic coast in Estonia in 2009, 2010 and 2015. For the 2015 data set, we used a stable hydrogen (H) approach to trace the potential natal origin of the migrant hawker (Aeshna mixta). RESULTS: 1079 (2009), 701 (2010) and 88 (2015) A. mixta individuals were caught during the study periods (35, 37 and 11 days in 2009, 2010 and 2015, respectively). The migration period lasted from end of August to end of September. Based on the results from our stable isotope analysis, we identified two populations of A. mixta: One (range of isotope signatures of non-exchangeable H [delta(2)H(n wing)]: -78 per thousand to -112 per thousand) had a local likely origin while the other (delta(2)H(n wing): -113 per thousand to -147 per thousand) migrated from northerly directions even in headwind from the South. The former showed an even sex ratio whereas the actively migrating population was dominated by males. CONCLUSIONS: Our results suggest a regular southbound autumn migration of A. mixta along the Baltic coast. However, nearly half of the sampled individuals originated from the surroundings suggesting either no, partial or "leap-frog" migration. Contrary to our expectation, A. mixta did not select favourable wind conditions but continued the southbound autumn migration in the flight boundary layer even in case of headwinds. The dominance of males might indicate migration as a result of competition for resources. Further repeated, large-scale studies along the Baltic coast are necessary to pinpoint the migratory pattern and the reason for migration of A. mixta. Such studies should also comprise locations north of the known species range of A. mixta because of the rapid climate-change induced range expansion

Okamoto, M., Yasuda, K., Azuma, A., 1996. Aerodynamic characteristics of the wings and body of a dragonfly. J. Exp. Biol. 199, 281-294.
Abstract: The aerodynamic characteristics of the wings and body of a dragonfly and of artificial wing models were studied by conducting two types of wind-tunnel tests and a number of free-flight tests of gliders made using dragonfly wings. The results were consistent between these different tests. The effects of camber, thickness, sharpness of the leading edge and surface roughness on the aerodynamic characteristics of the wings were characterized in the flow field with Reynolds numbers (Re) as low as 103 to 104

Okude, G., Futahashi, R., 2021. Pigmentation and color pattern diversity in Odonata. Curr. Opin. Genet. Dev. 69, 14-20.
Abstract: The order Odonata (dragonflies and damselflies) comprises diurnal insects with well-developed vision, showing diverse colors in adult wings and bodies. It is one of the most ancestral winged insect groups. Because Odonata species use visual cues to recognize each other, color patterns have been investigated from ecological and evolutionary viewpoints. Here we review the recent progress on molecular mechanisms of pigmentation, especially focused on light-blue coloration. Results from histology and pigment analysis showed that ommochrome pigments on the proximal layer and pteridine pigments on the distal layer of the epidermis are essential for light-blue coloration. We also summarize genes involved in the biosynthesis of three major insect pigments conserved across insects and discuss that gene-functional analysis deserves future studies

Olberg, R.M., Worthington, A.H., Venator, K.R., 2000. Prey pursuit and interception in dragonflies. J. Comp Physiol A 186, 155-162.
Abstract: Perching dragonflies (Libellulidae; Odonata) are sit-and-wait predators, which take off and pursue small flying insects. To investigate their prey pursuit strategy, we videotaped 36 prey-capture flights of male dragonflies, Erythemis simplicicollis and Leucorrhinia intacta, for frame-by-frame analysis. We found that dragonflies fly directly toward the point of prey interception by steering to minimize the movement of the prey's image on the retina. This behavior could be guided by target-selective descending interneurons which show directionally selective visual responses to small-object movement. We investigated how dragonflies discriminate distance of potential prey. We found a peak in angular velocity of the prey shortly before take-off which might cue the dragonfly to nearby flying targets. Parallax information from head movements was not required for successful prey pursuit

Olberg, R.M., Worthington, A.H., Fox, J.L., Bessette, C.E., Loosemore, M.P., 2005. Prey size selection and distance estimation in foraging adult dragonflies. J. Comp Physiol A Neuroethol. Sens. Neural Behav. Physiol 191, 791-797.
Abstract: To determine whether perching dragonflies visually assess the distance to potential prey items, we presented artificial prey, glass beads suspended from fine wires, to perching dragonflies in the field. We videotaped the responses of freely foraging dragonflies (Libellula luctuosa and Sympetrum vicinum-Odonata, suborder Anisoptera) to beads ranging from 0.5 mm to 8 mm in diameter, recording whether or not the dragonflies took off after the beads, and if so, at what distance. Our results indicated that dragonflies were highly selective for bead size. Furthermore, the smaller Sympetrum preferred beads of smaller size and the larger Libellula preferred larger beads. Each species rejected beads as large or larger than their heads, even when the beads subtended the same visual angles as the smaller, attractive beads. Since bead size cannot be determined without reference to distance, we conclude that dragonflies are able to estimate the distance to potential prey items. The range over which they estimate distance is about 1 m for the larger Libellula and 70 cm for the smaller Sympetrum. The mechanism of distance estimation is unknown, but it probably includes both stereopsis and the motion parallax produced by head movements

Olberg, R.M., Seaman, R.C., Coats, M.I., Henry, A.F., 2007. Eye movements and target fixation during dragonfly prey-interception flights. J. Comp Physiol A Neuroethol. Sens. Neural Behav. Physiol 193, 685-693.
Abstract: The capture of flying insects by foraging dragonflies is a highly accurate, visually guided behavior. Rather than simply aiming at the prey's position, the dragonfly aims at a point in front of the prey, so that the prey is intercepted with a relatively straight flight trajectory. To better understand the neural mechanisms underlying this behavior, we used high-speed video to quantify the head and body orientation of dragonflies (female Erythemis simplicicollis flying in an outdoor flight cage) relative to an artificial prey object before and during pursuit. The results of our frame-by-frame analysis showed that during prey pursuit, the dragonfly adjusts its head orientation to maintain the image of the prey centered on the "crosshairs" formed by the visual midline and the dorsal fovea, a high acuity streak that crosses midline at right angles about 60 degrees above the horizon. The visual response latencies to drifting of the prey image are remarkably short, ca. 25 ms for the head and 30 ms for the wing responses. Our results imply that the control of the prey-interception flight must include a neural pathway that takes head position into account

Olberg, R.M., 2012. Visual control of prey-capture flight in dragonflies. Curr. Opin. Neurobiol. 22, 267-271.
Abstract: Interacting with a moving object poses a computational problem for an animal's nervous system. This problem has been elegantly solved by the dragonfly, a formidable visual predator on flying insects. The dragonfly computes an interception flight trajectory and steers to maintain it during its prey-pursuit flight. This review summarizes current knowledge about pursuit behavior and neurons thought to control interception in the dragonfly. When understood, this system has the potential for explaining how a small group of neurons can control complex interactions with moving objects

Oliveira-Junior, J.M.B., Juen, L., 2019. The Zygoptera/Anisoptera Ratio (Insecta: Odonata): a New Tool for Habitat Alterations Assessment in Amazonian Streams. Neotrop. Entomol. 48, 552-560.
Abstract: The accumulation of scientific knowledge is far outstripped by the rate of environmental disturbance from human activities in aquatic habitats. This highlights the need to develop effective proxy measures of aquatic biodiversity that can demonstrate changes in communities associated with human activities. We evaluated whether the relative abundance and species richness of Anisoptera and Zygoptera can be used as a tool to measure environmental impacts on Amazonian streams. Adult of Anisoptera and Zygoptera were sampled in 50 Amazonian streams, in the municipality of Paragominas (Para state), Brazil, using an entomological handnet. The physical features of each stream were evaluated using an index of environmental integrity (HII). We collected a total of 1769 Odonata specimens, representing 97 species (56 were Zygoptera and 41 were Anisoptera). Habitat modification resulted in an inversion in the proportional abundance and species richness of Anisoptera and Zygoptera, where Zygoptera diversity decreased with the loss of habitat integrity, whereas Anisoptera diversity increased with habitat disturbance. A decline of 0.1 in the habitat integrity index score resulted in an increase of approximately 13 individuals and 11 species of Anisoptera, with the exact opposite effect observed for the Zygoptera. In summary, the Odonata proved to be a useful model for the assessment of Amazonian streams, with sites where more than 54% of the Odonata species were Zygoptera being classified as preserved, and those dominated by Anisoptera species (> 59%) being considered degraded. This approach has clear applications for environmental impact assessments, as it reduces the influence of sampling effort and collector experience on assessment outcomes, and does not rely upon specialist knowledge, given that members of the two suborders are easily distinguished from one and other in the field

O'Malley, Z.G., Compson, Z.G., Orlofske, J.M., Baird, D.J., Curry, R.A., Monk, W.A., 2020. Riparian and in-channel habitat properties linked to dragonfly emergence. Sci. Rep. 10, 17665.
Abstract: In freshwater ecosystems, habitat alteration contributes directly to biodiversity loss. Dragonflies are sentinel species that are key invertebrate predators in both aquatic (as larvae) and terrestrial ecosystems (as adults). Understanding the habitat factors affecting dragonfly emergence can inform management practices to conserve habitats supporting these species and the functions they perform. Transitioning from larvae to adults, dragonflies leave behind larval exoskeletons (exuviae), which reveal information about the emergent population without the need for sacrificing living organisms. Capitalizing on Atlantic Canada's largest freshwater wetland, the Grand Lake Meadows (GLM) and the associated Saint John/Wolastoq River (SJWR), we studied the spatial (i.e., across the mainstem, tributary, and wetland sites) and temporal (across 3 years) variation in assemblages of emergent dragonflies (Anisoptera) and assessed the relative contribution of aquatic and terrestrial factors structuring these assemblages. The GLM complex, including the lotic SJWR and its tributaries and associated lentic wetlands, provided a range of riparian and aquatic habitat variability ideal for studying dragonfly emergence patterns across a relatively homogenous climatic region. Emergent dragonfly responses were associated with spatial, but not temporal, variation. Additionally, dragonfly communities were associated with both aquatic and terrestrial factors, while diversity was primarily associated with terrestrial factors. Specific terrestrial factors associated with the emergence of the dragonfly community included canopy cover and slope, while aquatic factors included water temperature, dissolved oxygen, and baseflow. Our results indicate that management of river habitats for dragonfly conservation should incorporate riparian habitat protection while maintaining aquatic habitat and habitat quality

Op de BL, Verheyen J, Stoks R. 2017. Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy. Environ Pollut 233:226-234.
Abstract: There is increasing concern that standard laboratory toxicity tests may be misleading when assessing the impact of toxicants, because they lack ecological realism. Both warming and biotic interactions have been identified to magnify the effects of toxicants. Moreover, while biotic interactions may change the impact of toxicants, toxicants may also change the impact of biotic interactions. However, studies looking at the impact of biotic interactions on the toxicity of pesticides and vice versa under warming are very scarce. Therefore, we tested how warming (+4 degrees C), intraspecific competition (density treatment) and exposure to the pesticide chlorpyrifos, both in isolation and in combination, affected mortality, cannibalism, growth and heat tolerance of low- and high-latitude populations of the damselfly Ischnura elegans. Moreover, we addressed whether toxicant exposure, potentially in interaction with competition and warming, increased the frequency of autotomy, a widespread antipredator mechanism. Competition increased the toxicity of chlorpyrifos and made it become lethal. Cannibalism was not affected by chlorpyrifos but increased at high density and under warming. Chlorpyrifos reduced heat tolerance but only when competition was high. This is the first demonstration that a biotic interaction can be a major determinant of 'toxicant-induced climate change sensitivity'. Competition enhanced the impact of chlorpyrifos under warming for high-latitude larvae, leading to an increase in autotomy which reduces fitness in the long term. This points to a novel pathway how transient pesticide pulses may cause delayed effects on populations in a warming world. Our results highlight that the interplay between biotic interactions and toxicants have a strong relevance for ecological risk assessment in a warming polluted world

Ortega-Salas, H., Gonzlez-Soriano, E., Jocque, M., 2022. Untangling the waterfall damsels: a review of the Mesoamerican genus Paraphlebia Selys in Hagen, 1861 (Odonata: Thaumatoneuridae) with descriptions of 11 new species. Zootaxa. 5089, 1-66.
Abstract: A review of the Mesoamerican genus Paraphlebia Selys in Hagen, 1861 is presented, including diagnoses, illustrations of diagnostic characters, and distribution maps for all species. A key to the known males and females is provided. Eleven new species are described: P. akan Ortega-Salas Gonzlez-Soriano. sp. nov., P. chaak Ortega-Salas Gonzlez-Soriano sp. nov., P. chiarae Ortega-Salas sp. nov., P. esperanza Ortega-Salas Gonzlez-Soriano sp. nov., P. flinti Ortega-Salas Gonzlez-Soriano sp. nov., P. hunnal Ortega-Salas Gonzlez-Soriano sp. nov., P. itzamna Ortega-Salas, Jocque Gonzlez-Soriano sp. nov., P. ixchel Ortega-Salas Gonzlez-Soriano sp. nov., P. kauil Ortega-Salas Gonzlez-Soriano sp. nov., P. kinich Ortega-Salas Gonzlez-Soriano sp. nov., and P. kukulkan Jocque Ortega-Salas sp. nov

Outomuro, D., Johansson, F., 2015. Bird predation selects for wing shape and coloration in a damselfly. J. Evol. Biol. 28, 791-799.
Abstract: Wing shape is related to flight performance, which is expected to be under selection for improving flight behaviours such as predator avoidance. Moreover, wing conspicuousness, usually involved in sexual selection processes, is also relevant in terms of predation risk. In this study, we examined how predation by a passerine bird, the white wagtail Motacilla alba, selects wing shape and wing colour patch size in males of the banded demoiselle Calopteryx splendens. The wing colour patch is intra- and intersexually selected in the study species. In a field study, we compared wings of live damselflies to wings of predated damselflies which are always discarded after predation. Based on aerodynamic theory and a previous study on wing shape of territorial tactics in damselflies, we predicted an overall short and broad wing, with a concave front margin shape to be selected by predation. This shape would be expected to improve escaping ability. Moreover, we predicted that wing patch size should be negatively selected by predation. We found that selection operated differently on fore- and hindwings. In contrast to our predictions, predation favoured a slender general forewing shape. However, the predicted wing shape was favoured in hindwings. We also found selection favouring a narrower wing colour patch. Our results suggest different roles of fore- and hindwings in flight, as previously suggested for Calopteryx damselflies and shown for butterflies and moths. Forewings would be more involved in sustained flight and hindwings in flight manoeuvrability. Our results differ somehow from a recently published work in the same study system, but using another population, suggesting that selection can fluctuate across space, despite the simplicity of this predator-prey system

Outomuro, D., Dijkstra, K.D., Johansson, F., 2013. Habitat variation and wing coloration affect wing shape evolution in dragonflies. J. Evol. Biol. 26, 1866-1874.
Abstract: Habitats are spatially and temporally variable, and organisms must be able to track these changes. One potential mechanism for this is dispersal by flight. Therefore, we would expect flying animals to show adaptations in wing shape related to habitat variation. In this work, we explored variation in wing shape in relation to preferred water body (flowing water or standing water with tolerance for temporary conditions) and landscape (forested to open) using 32 species of dragonflies of the genus Trithemis (80% of the known species). We included a potential source of variation linked to sexual selection: the extent of wing coloration on hindwings. We used geometric morphometric methods for studying wing shape. We also explored the phenotypic correlation of wing shape between the sexes. We found that wing shape showed a phylogenetic structure and therefore also ran phylogenetic independent contrasts. After correcting for the phylogenetic effects, we found (i) no significant effect of water body on wing shape; (ii) male forewings and female hindwings differed with regard to landscape, being progressively broader from forested to open habitats; (iii) hindwings showed a wider base in wings with more coloration, especially in males; and (iv) evidence for phenotypic correlation of wing shape between the sexes across species. Hence, our results suggest that natural and sexual selection are acting partially independently on fore- and hindwings and with differences between the sexes, despite evidence for phenotypic correlation of wing shape between males and females

Outomuro, D., Golab, M.J., Johansson, F., Sniegula, S., 2021. Body and wing size, but not wing shape, vary along a large-scale latitudinal gradient in a damselfly. Sci. Rep. 11, 18642.
Abstract: Large-scale latitudinal studies that include both north and south edge populations and address sex differences are needed to understand how selection has shaped trait variation. We quantified the variation of flight-related morphological traits (body size, wing size, ratio between wing size and body size, and wing shape) along the whole latitudinal distribution of the damselfly Lestes sponsa, spanning over 2700 km. We tested predictions of geographic variation in the flight-related traits as a signature of: (1) stronger natural selection to improve dispersal in males and females at edge populations; (2) stronger sexual selection to improve reproduction (fecundity in females and sexual behaviors in males) at edge populations. We found that body size and wing size showed a U-shaped latitudinal pattern, while wing ratio showed the inverse shape. However, wing shape varied very little along the latitudinal gradient. We also detected sex-differences in the latitudinal patterns of variation. We discuss how latitudinal differences in natural and sexual selection regimes can lead to the observed quadratic patterns of variation in body and wing morphology via direct or indirect selection. We also discuss the lack of latitudinal variation in wing shape, possibly due to aerodynamic constraints

Palomar, G., Wos, G., Stoks, R., & Sniegula, S. (2023). Latitude-specific urbanization effects on life history traits in the damselfly Ischnura elegans. Evol. Appl. 16, 1503-1515, doi:EVA13583 [pii];10.1111/eva.13583 [doi].
Abstract: Many species are currently adapting to cities at different latitudes. Adaptation to urbanization may require eco-evolutionary changes in response to temperature and invasive species that may differ between latitudes. Here, we studied single and combined effects of increased temperatures and an invasive alien predator on the phenotypic response of replicated urban and rural populations of the damselfly Ischnura elegans and contrasted these between central and high latitudes. Adult females were collected in rural and urban ponds at central and high latitudes. Their larvae were exposed to temperature treatments (current [20 degrees C], mild warming [24 degrees C], and heat wave [28 degrees C; for high latitude only]) crossed with the presence or absence of chemical cues released by the spiny-cheek crayfish (Faxonius limosus), only present at the central latitude. We measured treatment effects on larval development time, mass, and growth rate. Urbanization type affected all life history traits, yet these responses were often dependent on latitude, temperature, and sex. Mild warming decreased mass in rural and increased growth rate in urban populations. The effects of urbanization type on mass were latitude-dependent, with central-latitude populations having a greater phenotypic difference. Urbanization type effects were sex-specific with urban males being lighter and having a lower growth rate than rural males. At the current temperature and mild warming, the predator cue reduced the growth rate, and this independently of urbanization type and latitude of origin. This pattern was reversed during a heat wave in high-latitude damselflies. Our results highlight the context-dependency of evolutionary and plastic responses to urbanization, and caution for generalizing how populations respond to cities based on populations at a single latitude

Paul, S., Khan, M.K., Herberstein, M.E., 2022. Sexual and developmental variations of ecto-parasitism in damselflies. PLoS. One. 17, e0261540.
Abstract: The prevalence and intensity of parasitism can have different fitness costs between sexes, and across species and developmental stages. This variation could arise because of species specific sexual and developmental differences in body condition, immunity, and resistance. Theory predicts that the prevalence of parasitism will be greater in individuals with poor body condition and the intensity of parasitism will be greater in individuals with larger body size. These predictions have been tested and verified in vertebrates. In insects, however, contradictory evidence has been found in different taxa. Here, we tested these predictions on two species of Agriocnemis (Agriocnemis femina and Agriocnemis pygmaea) damselflies, which are parasitized by Arrenurus water mite ectoparasites. We measured body weight, total body length, abdomen area and thorax area of non-parasitized damselflies and found body condition varied between males and females, between immature females and mature females and between A. femina and A. pygmaea. Then, we calculated the parasite prevalence, i.e., the absence or presence of parasites and intensity, i.e., the number of parasites per infected damselfly in eleven natural populations of both species. In line to our predictions, we observed greater prevalence in immature females than mature females but found no difference in parasite prevalence between males and females. Furthermore, we found that parasite intensity was higher in females than males and in immature females than mature females. Our result also showed that the frequency and intensity of parasitism varied between the two studied species, being higher in A. pygmaea than A. femina. Our study provides evidence that parasitism impacts sexes, developmental stages and species differentially and suggests that variation may occur due to sex, developmental stage, and species-specific resistance and tolerance mechanism

Paul, S., Rayhan, M., Herberstein, M. E., & Khan, M. K. (2024). Cooler and drier conditions increase parasitism in a subtropical damselfly population. Ecol. Evol. 14, e10897, doi:ECE310897 [pii];10.1002/ece3.10897 [doi].
Abstract: Host-parasite interactions are impacted by climate, which may result in variation of parasitism across landscapes and time. Understanding how parasitism varies across these spatio-temporal scales is crucial to predicting how organisms will respond to and cope under a rapidly changing climate. Empirical work on how parasitism varies across climates is limited. Here, we examine the variation of parasitism across seasons and identify the likely climatic factors that explain this variation using Agriocnemis femina damselflies and Arrenurus water mite ectoparasites as a host-parasite study system. We assessed parasitism in a natural population in Sylhet, Bangladesh which is located in subtropical climate between 2021 and 2023. We calculated prevalence (proportion of infected individuals) and intensity (the number of parasites on an infected individual) of parasitism across different seasons. Parasite prevalence and intensity were greater during cooler seasons (autumn and winter) compared to hotter seasons (spring and summer). Mean temperature and precipitation were negatively correlated with parasite prevalence, whereas only mean precipitation was negatively correlated with parasite intensity. Tropical, subtropical and mediterranean regions are predicted to experience extreme climatic events (extreme temperature, less precipitation and frequent drought) as a consequence of anthropogenic climate change, and our finding suggests that this might alter patterns of parasitism in aquatic insects

Peisker, H., Gorb, S.N., 2010. Always on the bright side of life: anti-adhesive properties of insect ommatidia grating. J. Exp. Biol. 213, 3457-3462.
Abstract: The surface of some insect eyes consists of arrays of cuticular protuberances, which are 50-300 nm in diameter, and are termed corneal nipples or ommatidia gratings. They were widely reported to reduce the reflectance for normally incident light, contributing to camouflage by reducing glare to predators, while furthermore enhancing the intake of light, which is especially important for nocturnal insects. Our preliminary observations suggest a third function: in contrast to the rest of the body, ommatidia of various insects remain clean, even in a heavy contaminated environment. In order to prove such an anti-contamination hypothesis of these structures, we measured the adhesive properties of polymer moulds of insect ommatidia, and compared these data with control surfaces having the same curvature radii but lacking such a nanostructure. A scanning electron microscope (SEM) study and force measurements using an atomic force microscope (AFM) on the eye surfaces of three different insect species, dragonfly Aeshna mixta (Odonata), moth Laothoe populi (Lepidoptera) and fly Volucella pellucens (Diptera), were undertaken. We revealed that adhesion is greatly reduced by corneal grating in L. populi and V. pellucens when compared with their smooth controls. The smooth cornea of A. mixta showed no statistically significant difference to its control. We assume that this anti-adhesive phenomenon is due to a decrease in the real contact area between contaminating particles and the eye's surface. Such a combination of three functions in one nanostructure can be interesting for the development of industrial multifunctional surfaces capable of enhancing light harvesting while reducing light reflection and adhesion

Pelissie, M., Johansson, F., Hyseni, C., 2022. Pushed Northward by Climate Change: Range Shifts With a Chance of Co-occurrence Reshuffling in the Forecast for Northern European Odonates. Environ. Entomol. 51, 910-921.
Abstract: Biodiversity is heavily influenced by ongoing climate change, which often results in species undergoing range shifts, either poleward or uphill. Range shifts can occur provided suitable habitats exist within reach. However, poleward latitudinal shifts might be limited by additional abiotic or biotic constraints, such as increased seasonality, photoperiod patterns, and species interactions. To gain insight into the dynamics of insect range shifts at high latitudes, we constructed ecological niche models (ENMs) for 57 Odonata species occurring in northern Europe. We used citizen science data from Sweden and present-day climatic variables covering a latitudinal range of 1,575 km. Then, to measure changes in range and interactions among Odonata species, we projected the ENMs up to the year 2080. We also estimated potential changes in species interactions using niche overlap and co-occurrence patterns. We found that most Odonata species are predicted to expand their range northward. The average latitudinal shift is expected to reach 1.83 and 3.25 km y-1 under RCP4.5 and RCP8.5 scenarios, respectively, by 2061-2080. While the most warm-dwelling species may increase their range, our results indicate that cold-dwelling species will experience range contractions. The present-day niche overlap patterns among species will remain largely the same in the future. However, our results predict changes in co-occurrence patterns, with many species pairs showing increased co-occurrence, while others will no longer co-occur because of the range contractions. In sum, our ENM results suggest that species assemblages of Odonata-and perhaps insects in general-in northern latitudes will experience great compositional changes

Pena-Firm, Guillermo-Ferreira, R., 2020. Females of the red damselfly Mnesarete pudica are attracted to more ornamented males and attract rival males. Sci. Rep. 10, 14320.
Abstract: Male calopterygid damselflies often exhibit colourful wings used during aggressive contests and courtship displays. Evidence suggests that male wing coloration is a secondary sexual character assessed by males and females to identify male quality. In some species, males adopt a lekking strategy, where females visit exhibition arenas and choose the best mate. Here, we addressed whether the behaviour of Mnesarete pudica males is influenced by female visitation when gathering in leks. We hypothesized that female visitation would increase male investment in courtship and fighting, while reducing patrolling flights and harassment attempts. Moreover, we tested the hypothesis that more ornamented males attract more females to the territory, following the hotshot model of lek evolution. Our results suggest that, indeed, males with more pigmented wings attract more visiting females, independently of male size. Our results also show that the number of females in a territory attracts more males and elicits male contest behaviour, reducing male harassment. We conclude that male ornament and male clustering is a good predictor of female visitation rates, suggesting that females may exert mate choice

Peng, L., Pan, T., Zheng, M., Song, S., Su, G., Li, Q., 2022. Kinematics and Aerodynamics of Dragonflies (Pantala flavescens, Libellulidae) in Climbing Flight. Front Bioeng. Biotechnol. 10, 795063.
Abstract: This study presents a detailed analysis of dragonflies' climbing flight by integratinghigh-speed photogrammetry, three-dimensional reconstruction, and computational fluid dynamics. In this study, a dragonfly's climbing flight is captured by two high-speed cameras with orthogonal optical axes. Through feature point matching and three-dimensional reconstruction, the body kinematics and wing kinematics of 22 dragonflies in climbing flight are accurately captured. Experimental results show that the climbing angles (eta) are distributed from 10 degrees to 80 degrees and are concentrated within two ranges, 60 degrees -70 degrees (36%) and 20 degrees -30 degrees (32%), which are defined as large angle climb (LAC) and small angle climb (SAC), respectively. In order to study the aerodynamic mechanism of the climbing flight based on the biological observation results, the kinematic parameters of the dragonfly during LAC and SAC are selected for analysis and numerical simulation. The results show that the climbing angle eta and wing kinematics are related. There are considerable differences in wing kinematics during climbing with different eta, while the wing kinematics are unchanged during climbing with similar eta. With the increase in eta, the phase difference (lambda) between the forewing and the hind wing decreases and the amplitude of the positional angle (theta mean) of the hind wing increases, while theta mean of the forewing remains almost unchanged. Through numerical simulation of LAC and SAC, it can be found that during the climb with different eta, the different wing kinematics have a significant influence on aerodynamic performance. During SAC, the increase in lambda and the decrease in theta mean of the hind wing weaken the aerodynamic disturbance of the forewing by the vortex wing of the hind wing, thus improving the flight efficiency

Pereira-Moura, L., de Sena, W.S., Neiss, U.G., Couceiro, S.R.M., 2021. Environmental integrity as a modeler of the composition of the Odonata community. Environ. Monit. Assess. 193, 160.
Abstract: Human actions often alter natural environments, causing homogenization of micro-habitats and, consequently, the loss or replacement of species. Our research evaluates how the effects of environmental integrity and the physical and chemical characteristics of streams influence the adult Odonata community in a region of the Amazon, in western Para. The data were obtained in 15 streams of first and second order in the municipality of Santarem, Para, between October and December 2014 (dry season) and between March and May 2015 (rainy season). A total of 544 specimens were collected, distributed in 23 genera, 35 species. Significant differences were observed in the composition of Odonata based on the integrity of streams, and species are replaced as the habitat integrity gradient is reduced, with species that need more preserved conditions extinct locally, making room for generalist species. However, only Psaironeura tenuissima was an indicator of more preserved sites, while Argia sp.1 and Mnesarete smaragdina were indicative of altered sites. None of the variables had any influence on the richness or abundance of Odonata

Perron, M.A.C., Pick, F.R., 2020. Water quality effects on dragonfly and damselfly nymph communities: A comparison of urban and natural ponds. Environ. Pollut. 263, 114472.
Abstract: Cities are increasingly using constructed ponds to mitigate flooding and downstream water pollution from urban runoff. As a result, these stormwater ponds can have poor water quality, yet they can also attract wildlife. In this study, the effects of water quality on dragonflies and damselflies (Odonata) were determined in stormwater ponds (n = 41) and natural reference ponds (n = 10) of similar size across the National Capital Region of Canada. A total of 38 chemical/physical water quality variables along with Odonata nymph abundance and taxonomic composition were sampled at each pond. Chloride concentrations exceeded the guideline for the protection of aquatic life at over two-thirds of the stormwater ponds. Among all the metals tested, only Cu exceeded guidelines at many stormwater ponds. Both dragonfly and damselfly nymphs were on average less abundant in the stormwater ponds in comparison to the natural ponds. Ponds with high concentrations of chloride and metals typically had lower dragonfly abundance. Dragonfly community structure was significantly influenced by high chloride (or conductivity), which likely originates from winter road salting. In contrast, damselfly community structure in the stormwater ponds was similar to that found in natural ponds, with nutrients and metals explaining a small percent of variation in community structure. A water quality index developed to assess habitats for the protection of aquatic life did not significantly explain Odonata abundance or measures of diversity and may not be suitable in assessing pond habitat quality. To improve pond habitats within cities, efforts should be directed at reducing the amount of impervious surface and road salt usage within catchment basins

Perron, M.A.C., Richmond, I.C., Pick, F.R., 2021. Plants, water quality and land cover as drivers of Odonata assemblages in urban ponds. Sci. Total Environ. 773, 145467.
Abstract: As cities expand, urban ecosystems could either contribute to or impede conservation efforts. To maximize the potential for urban areas to support biodiversity, there is a need to understand how systems in an urban environment can sustain the natural history requirements of species. This study compared the relative importance of local-scale factors (plant communities and water quality) to landscape factors (surrounding land cover) in structuring assemblages of a recognized group of wetland bioindicators. Odonata (dragonflies and damselflies), at both the adult and larval life stages, along with plant communities, pond water quality and surrounding land cover types were sampled at 51 ponds across a north temperate metropolitan area. Plant communities (particularly of wetland species) consistently explained the largest amount of variation in both dragonfly and damselfly community structure at all life stages. Pond water quality was of secondary importance for both aquatic and terrestrial life stages, with dragonflies more negatively affected by urban contaminants than damselflies. Overall, surrounding land cover types in pond catchments explained less variation in Odonata community structure, especially in the case of damselflies. However, the presence of adjacent ponds and wetlands had a measurable effect. Plant, water quality and land cover variables together explained as much as half of the variation in Odonata community structure at ponds. Urban ponds could potentially provide high quality habitat for species when designed and managed to promote native wetland plant communities and water quality is maintained

Pfitzner, W.P., Beck, M., Weitzel, T., Becker, N., 2015. The Role of Mosquitoes in the Diet of Adult Dragon and Damselflies (Odonata). J. Am. Mosq. Control Assoc. 31, 187-189.
Abstract: The flood plains of the Upper Rhine Valley provide excellent conditions for the proliferation of mosquitoes as well as for the development of dragon and damselflies. It could be assumed that mosquitoes belong to the diet of the Odonata and that the latter could be harmed by the reduction of the mosquito population with the purpose of diminishing the massive nuisance for the people living there. A total of 41 adult dragonflies and damselflies were examined by immunoblot for remnants of mosquitoes in their guts. A rabbit antiserum against Aedes vexans proteins was used for the immunoblot. Only 3 Aeshna cyanea and 1 Platycnemis pennipes could be shown to have fed on mosquitoes. In specimens of the genus Sympetrum no mosquitoes were detected. It seems very doubtful that mosquitoes are an essential part of the Odonata diet

Piersanti S, Rebora M. 2017. The antennae of damselfly larvae. Arthropod Struct Dev., in press.
Abstract: The larval antennal sensilla of two Zygoptera species, Calopteryx haemorroidalis (Calopterygidae) and Ischnura elegans (Coenagrionidae) are investigated with SEM and TEM. These two species have different antennae (geniculate, setaceous) and live in different environments (lotic, lentic waters). Notwithstanding this, similarities in the kind and distribution of sensilla are outlined: in both species the majority of sensilla types is located on the apical portion of the antenna, namely a composed coeloconic sensillum (possible chemoreceptor), two other coeloconic sensilla (possible thermo-hygroreceptors) and an apical seta (direct contact mechanoreceptor). Other mechanoreceptors, such as filiform hairs sensitive to movements of the surrounding medium or bristles positioned to sense the movements of the flagellar segments, are present on the antenna. Similarities in the antennal sensilla types and distribution are observed also with other dragonfly species, such as Onychogomphus forcipatus and Libellula depressa. A peculiar structure with an internal organization similar to that of a gland is observed in the apical antenna of C. haemorroidalis and I. elegans and it is present also in O. forcipatus and L. depressa. The possible function of this structure is at the moment unknown but deserves further investigations owing to its widespread presence in Odonata larvae

Piersanti, S., Rebora, M., Almaas, T.J., Salerno, G., Gaino, E., 2011. Electrophysiological identification of thermo- and hygro-sensitive receptor neurons on the antennae of the dragonfly Libellula depressa. J. Insect Physiol 57, 1391-1398.
Abstract: Recent ultrastructural investigations on Odonata antennal flagellum describe two types of sensilla styloconica, T1 and T2. The styloconic sensilla are located in pits, at the bottom of deep cavities, and share common features typical of thermo-hygroreceptors. In order to ascertain if the Odonata antennae are involved in hygroreception and thermoreception, we carried out electrophysiological recordings (single cell recordings, SCR) from adult males and females of Libellula depressa L., 1758. After contact was established, the antenna was stimulated by rapid changes in temperature and humidity. The present research shows the occurrence of a dry (DC), a moist (MC) and a cold (CC) receptor neurons on the antennal flagellum of L. depressa. These data demonstrate for the first time the presence of functional thermo-hygroreceptors on the antennal flagellum of dragonflies. The present results extend our knowledge of the not visual sensory modalities of Odonata, a field of research unexplored so far

Piersanti, S., Frati, F., Conti, E., Rebora, M., Salerno, G., 2014. The sense of smell in Odonata: an electrophysiological screening. J. Insect Physiol 70, 49-58.
Abstract: Volatile chemicals mediate a great range of intra- and interspecific signalling and information in insects. Olfaction has been widely investigated mostly in Neoptera while the knowledge of this sense in most basal insects such as Paleoptera (Odonata and Ephemeroptera) is still poor. In the present study we show the results of an electrophysiological screening on two model species, Libellula depressa (Libellulidae) and Ischnura elegans (Coenagrionidae), representatives of the two Odonata suborders Anisoptera and Zygoptera, with the aim to deep the knowledge on the sense of smell of this insect order. The antennal olfactory sensory neurons (OSNs) of these two species responded to the same 22 compounds (out of 48 chemicals belonging to different functional groups) encompassing mostly amines, carboxylic acids or aldehydes and belonging to green leaf volatiles, vertebrate related volatiles and volatiles emitted by standing waters bacteria. The properties of Odonata OSNs are very similar to those of ionotropic receptors (IRs) expressing OSNs in other insects

Piersanti, S., Frati, F., Conti, E., Gaino, E., Rebora, M., Salerno, G., 2014. First evidence of the use of olfaction in Odonata behaviour. J. Insect Physiol 62, 26-31.
Abstract: Dragonflies and damselflies are among the most ancient winged insects. Adults belonging to this order are visually oriented and are considered anosmic on the basis of neuroanatomical investigations. As a consequence, the chemical ecology of these predatory insects has long been neglected. Morphological and electrophysiological data demonstrated that dragonfly antennae possess olfactory sensilla. Additionally, a neuroanatomical study revealed the presence of spherical knots in the aglomerular antennal lobe that could allow for the perception of odour. However, the biological role of the antennal olfactory sensilla remains unknown, and no bioassay showing the use of olfaction in Odonata has been performed thus far. Here, we demonstrate through behavioural assays that adults of Ischnura elegans are attracted by olfactory cues emitted by prey; furthermore, using electrophysiological single-cell recordings, we prove that the antennal olfactory sensilla of I. elegans respond to prey odour. Our results clearly demonstrate the involvement of antennal olfactory sensilla in Odonata predation, thus showing, for the first time, the use of olfaction in Odonata biology. This finding indicates that the nervous system of Odonata is able to receive and process olfactory information, suggesting that the simple organisation of the antennal lobe does not prevent the use of olfaction in insects

Piersanti, S., Frati, F., Rebora, M., Salerno, G., 2016. Carbon dioxide detection in adult Odonata. Zoology (Jena) 117, 137-142.
Abstract: The present paper shows, by means of single-cell recordings, responses of antennal sensory neurons of the damselfly Ischnura elegans when stimulated by air streams at different CO2 concentrations. Unlike most insects, but similarly to termites, centipedes and ticks, Odonata possess sensory neurons strongly inhibited by CO2, with the magnitude of the off-response depending upon the CO2 concentration. The Odonata antennal sensory neurons responding to CO2 are also sensitive to airborne odors; in particular, the impulse frequency is increased by isoamylamine and decreased by heptanoic and pentanoic acid. Further behavioral investigations are necessary to assign a biological role to carbon dioxide detection in Odonata

Piersanti, S., Rebora, M., Salerno, G., Anton, S., 2020. The Antennal Pathway of Dragonfly Nymphs, from Sensilla to the Brain. Insects. 11.
Abstract: Dragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally different sensory cues has not been investigated in hemimetabolous insects. Here we describe the antennal sensilla, the general brain structure, and the antennal sensory pathways in the last six nymphal instars of Libellula depressa, in comparison with earlier published data from adults, using scanning electron microscopy, and antennal receptor neuron and antennal lobe output neuron mass-tracing with tetramethylrhodamin. Brain structure was visualized with an anti-synapsin antibody. Differently from adults, the nymphal antennal flagellum harbors many mechanoreceptive sensilla, one olfactory, and two thermo-hygroreceptive sensilla at all investigated instars. The nymphal brain is very similar to the adult brain throughout development, despite the considerable differences in antennal sensilla and habitat. Like in adults, nymphal brains contain mushroom bodies lacking calyces and small aglomerular antennal lobes. Antennal fibers innervate the antennal lobe similar to adult brains and the gnathal ganglion more prominently than in adults. Similar brain structures are thus used in L. depressa nymphs and adults to process diverging sensory information

Piersanti, S., Salerno, G., Di, P., V, Giontella, L., Rebora, M., Jones, A., Fincke, O.M., 2021. Tests of search image and learning in the wild: Insights from sexual conflict in damselflies. Ecol. Evol. 11, 4399-4412.
Abstract: Search image formation, a proximal mechanism to maintain genetic polymorphisms by negative frequency-dependent selection, has rarely been tested under natural conditions. Females of many nonterritorial damselflies resemble either conspecific males or background vegetation. Mate-searching males are assumed to form search images of the majority female type, sexually harassing it at rates higher than expected from its frequency, thus selectively favoring the less common morph. We tested this and how morph coloration and behavior influenced male perception and intersexual encounters by following marked Ischnura elegans and noting their reactions to conspecifics. Contrary to search image formation and associative learning hypotheses, although males encountered the minority, male-like morph more often, sexual harassment and clutch size were similar for both morphs. Prior mating attempts or copula with morphs did not affect a male's subsequent reaction to them; males rarely attempted matings with immature females or males. Females mated early in the day, reducing the opportunity for males to learn their identity beforehand. Once encountered, the male-like morph was more readily noticed by males than the alternative morph, which once noticed was more likely to receive mating attempts. Flexible behavior gave morphs considerable control over their apparency to males, influencing intersexual encounters. Results suggested a more subtle proximal mechanism than male learning maintains these color polymorphisms and call for inferences of learning to be validated by behavior of wild receivers and their signalers

Pinto, N.S., De, M.P., Moura, R.R., 2022. Know your enemy: The dragonfly Erythrodiplax fusca (Libellulidae) uses eavesdropping to obtain information about potential rivals. Behav. Processes 202, 104741.
Abstract: Animals can eavesdrop on other competitors during territorial defense disputes to better choose rivals weaker than themselves and increase the chances of monopolizing resources. In dragonflies, males often compete for access to water bodies, which attract sexually receptive females to mate and lay eggs. During the breeding season, satellite males can observe fights between territory owners and intruders and, therefore, obtain information about potential rivals through visual cues. Consequently, weaker competitors may face more intense competition than stronger ones when defending a territory. In this study, we conducted field experiments with the dragonfly Erythrodiplax fusca to investigate whether eavesdropping on territorial disputes, using visual cues, affects the intensity of competition that territory owners face. We recorded the number of intruders that engage in disputes against males that recently occupied territories in two groups: the "eavesdropping" group (i.e., individuals with access to rivals' prior information) and the control group (i.e., competitors with no access to prior information). The number of intruders was greater in the eavesdropping group compared to the control group. This effect depended on the interaction between the size of the territory owners and the presence of eavesdropping. The number of intruders decreased with increase in the size of the owners in the presence of eavesdropping, but this relationship did not occur in the control group. We discuss the implications of our findings for the male decision-making process to initiate agonistic disputes and how investigating eavesdropping behavior can improve current models of conflict resolution in animals

Poma, G., Liu, Y., Cuykx, M., Tang, B., Luo, X.J., Covaci, A., 2019. Occurrence of organophosphorus flame retardants and plasticizers in wild insects from a former e-waste recycling site in the Guangdong province, South China. Sci. Total. Environ. 650, 709-712.
Abstract: Due to the fast growth of the electronic industry, a large quantity of electronic waste (e-waste) is generated worldwide and then often inappropriately dismantled and disposed of. In a pilot study, the occurrence of organophosphorus flame retardants and plasticizers (PFRs) was investigated for the first time in several wild insect species collected from a former e-waste recycling site in the Guangdong province, South China. TEHP was the most abundant PFR (average concentration of 5.8ng/g ww), followed by TPHP (2.5ng/g ww), TCIPP (2.2ng/g ww), TCEP (0.8ng/g ww), EHDPHP and TCP (both 0.1ng/g ww). Dragonfly nymphs were the most contaminated insects, with total PFR concentrations of 68ng/g ww, followed by moth adults (26ng/g ww) and terrestrial stinkbug (17ng/g ww). The different contamination patterns observed in the analyzed insects could be explained by their different habitats and feeding habits. This study shows that e-waste recycling areas can be an important local source of contamination with PFRs, mainly caused by inadequate recycling activities

Popova, O.N., Haritonov, A.Y., Sushchik, N.N., Makhutova, O.N., Kalachova, G.S., Kolmakova, A.A., Gladyshev, M.I., 2017. Export of aquatic productivity, including highly unsaturated fatty acids, to terrestrial ecosystems via Odonata. Sci. Total. Environ. 581-582, 40-48.
Abstract: Based on 31-year field study of the abundance and biomass of 18 species of odonates in the Barabinsk Forest-Steppe (Western Siberia, Russia), we quantified the contribution of odonates to the export of aquatic productivity to surrounding terrestrial landscape. Emergence varied from 0.8 to 4.9g of wet biomass per m2 of land area per year. Average export of organic carbon was estimated to be 0.30g.m-2.year-1, which is comparable with the average production of herbivorous terrestrial insects in temperate grasslands. Moreover, in contrast to terrestrial insects, emerging odonates contained high quantities of highly unsaturated fatty acids (HUFA), namely eicosapentaenoic acid (20:5n-3, EPA), and docosahexaenoic acid (22:6n-3, DHA), which are known to be essential for many terrestrial animals, especially for birds. The export of EPA+DHA by odonates was found to be 1.92-11.76mg.m-2.year-1, which is equal to an average general estimation of the export of HUFA by emerging aquatic insects. Therefore, odonates appeared to be a quantitatively and qualitatively important conduit of aquatic productivity to forest-steppe ecosystem

Priyadarshana, T. S. & Slade, E. M. (2023). A meta-analysis reveals that dragonflies and damselflies can provide effective biological control of mosquitoes. J. Anim Ecol. 92, 1589-1600, doi:10.1111/1365-2656.13965 [doi].
Abstract: Dragonfly/damselfly naiads have the potential to control mosquitoes, and indirectly the diseases they carry, due to their extensive predation on mosquito larvae. Experimental studies have measured the effectiveness of individual dragonfly/damselfly naiads in controlling mosquitoes by introducing them to mosquito larvae and counting the number of larvae eaten in a given time period (i.e. predation success). Without a quantitative synthesis, however, such individual measures are unable to provide a generalized estimation about the effectiveness of dragonflies/damselflies as biological mosquito control agents. To achieve this, we assembled a database containing 485 effect sizes across 31 studies on predation successes of 47 species of commonly found dragonfly/damselfly naiads on nine species of mosquito larvae belonging to Aedes, Anopheles and Culex. These studies covered 14 countries across Asia, Africa and South and North America, where mosquitoes are the vectors of Chikungunya, Dengue, Japanese encephalitis, Lymphatic filariasis, Malaria, Rift Valley fever, West Nile fever, Yellow fever and Zika. Using this database, we conducted a meta-analysis to estimate the average predation success per day by a single individual dragonfly/damselfly naiad on these mosquito larvae as a generalized measure of the effectiveness of dragonflies/damselflies for mosquito control. We also built an interaction network for predator-dragonflies/damselflies and prey-mosquitoes and the diseases they vector to understand the functioning of this important predator-prey network. Our results showed that mosquito larvae were significantly reduced through predation by dragonfly/damselfly naiads. Within experimental containers, a single individual dragonfly/damselfly naiad can eat on average 40 (95% confidence intervals [CIs] = 20, 60) mosquito larvae per day, equivalent to a reduction of the mosquito larval population by 45% (95% CIs = 30%, 59%) per day. The average predation success did not significantly vary among Aedes, Anopheles and Culex mosquitoes or among the four (I-IV) mosquito larval stages. These results provide strong evidence that dragonflies/damselflies can be effective biological control agents of mosquitoes, and environmental planning to promote them could lower the risk of spreading mosquito-borne diseases in an environmentally friendly and cost-effective manner

Raczynski, M., Stoks, R., Johansson, F., Barton, K., Sniegula, S., 2022. Phenological Shifts in a Warming World Affect Physiology and Life History in a Damselfly. Insects. 13.
Abstract: Under climate warming, temperate ectotherms are expected to hatch earlier and grow faster, increase the number of generations per season, i.e., voltinism. Here, we studied, under laboratory conditions, the impact of artificial warming and manipulated hatching dates on life history (voltinism, age and mass at emergence and growth rate) and physiological traits (phenoloxidase (PO) activity at emergence, as an indicator of investment in immune function) and larval survival rate in high-latitude populations of the damselfly Ischnura elegans. Larvae were divided into four groups based on crossing two treatments: early versus late hatching dates and warmer versus control rearing temperature. Damselflies were reared in groups over the course of one (univoltine) or two (semivoltine) growth seasons, depending on the voltinism. Warming temperature did not affect survival rate. However, warming increased the number of univoltine larvae compared to semivoltine larvae. There was no effect of hatching phenology on voltinism. Early hatched larvae reared under warming had elevated PO activity, regardless of their voltinism, indicating increased investment in immune function against pathogens. Increased PO activity was not associated with effects on age or mass at emergence or growth rate. Instead, life history traits were mainly affected by temperature and voltinism. Warming decreased development time and increased growth rate in univoltine females, yet decreased growth rate in univoltine males. This indicates a stronger direct impact of warming and voltinism compared to impacts of hatching phenology on life history traits. The results strengthen the evidence that phenological shifts in a warming world may affect physiology and life history in freshwater insects

Raffard, A., Therry, L., Finn, F., Koch, K., Brodin, T., Blanchet, S., Cote, J., 2020. Does range expansion modify trait covariation? A study of a northward expanding dragonfly. Oecologia. 192,  565-575.
Abstract: The adaptive value of correlations among phenotypic traits depends on the prevailing environmental conditions. Differences in selection pressures during species range expansions may therefore shape phenotypic integration. In this study, we assessed variation in behavioral and morphological traits, as well as their covariations, in replicated southern and northern European populations of the northward expanding dragonfly Crocothemis erythraea. Larvae from northern populations were, on average, darker in color, and therefore, better camouflaged than larvae from southern populations. However, there was no difference in activity level. Darkness and activity were positively correlated in larvae from northern populations, whereas this trait covariation was missing in southern populations. This suggests the emergence of alternative strategies in time-limited northern populations, a higher activity level that required better camouflage through darker coloration, while less active larvae benefited from an energy-saving strategy by reducing the investment in costly traits, such as body darkness. We further found that larger larvae emerged into larger adults, with a higher investment in flight morphology. Our findings imply that phenotypic integration is associated with the northward range shift, potentially differentially shaping fitness consequences, and ecological interactions in southern versus northern populations

Rajabi H, Ghoroubi N, Stamm K, Appel E, Gorb SN. 2017. Dragonfly wing nodus: A one-way hinge contributing to the asymmetric wing deformation. Acta Biomater 60:330-338.
Abstract: Dragonfly wings are highly specialized locomotor systems, which are formed by a combination of several structural components. The wing components, also known as structural elements, are responsible for the various aspects of the wing functionality. Considering the complex interactions between the wing components, modelling of the wings as a whole is only possible with inevitable huge oversimplifications. In order to overcome this difficulty, we have recently proposed a new approach to model individual components of complex wings comparatively. Here, we use this approach to study nodus, a structural element of dragonfly wings which has been less studied to date. Using a combination of several imaging techniques including scanning electron microscopy (SEM), wide-field fluorescence microscopy (WFM), confocal laser scanning microscopy (CLSM) and micro-computed tomography (micro-CT) scanning, we aim to characterize the spatial morphology and material composition of fore- and hindwing nodi of the dragonfly Brachythemis contaminata. The microscopy results show the presence of resilin in the nodi, which is expected to help the deformability of the wings. The computational results based on three-dimensional (3D) structural data suggest that the specific geometry of the nodus restrains its displacements when subjected to pressure on the ventral side. This effect, resulting from an interlocking mechanism, is expected to contribute to the dorso-ventral asymmetry of wing deformation and to provide a higher resistance to aerodynamic forces during the downstroke. Our results provide an important step towards better understanding of the structure-property-function relationship in dragonfly wings. STATEMENT OF SIGNIFICANCE: In this study, we investigate the wing nodus, a specialized wing component in dragonflies. Using a combination of modern imaging techniques, we demonstrate the presence of resilin in the nodus, which is expected to facilitate the wing deformability in flight. The specific geometry of the nodus, however, seems to restrain its displacements when subjected to pressure on the ventral side. This effect, resulting from an interlocking mechanism, is suggested to contribute to dorso-ventral asymmetry of wing deformations and to provide a higher resistance to aerodynamic forces during the downstroke. Our results provide an important step towards better understanding of the structure-property-function relationship in dragonfly wings and might help to design more efficient wings for biomimetic micro-air vehicles

Rajabi H, Schroeter V, Eshghi S, Gorb SN. 2017. The probability of wing damage in the dragonfly Sympetrum vulgatum (Anisoptera: Libellulidae): a field study. Biol Open 6:1290-1293.
Abstract: Dragonfly wings resist millions of cycles of dynamic loading in their lifespan. During their operation, the wings are subjected to relatively high mechanical stresses. They further experience accidental collisions which result from the insects' daily activities, such as foraging, mating and fighting with other individuals. All these factors may lead to irreversible wing damage. Here, for the first time, we collected qualitative and quantitative data to systematically investigate the occurrence of damage in dragonfly wings in nature. The results obtained from the analysis of 119 wings from >30 individual Sympetrum vulgatum (Anisoptera: Libellulidae), collected at the second half of their flight period, indicate a high risk of damage in both fore- and hindwings. Statistical analyses show no significant difference between the extent of damage in fore- and hindwings, or between male and female dragonflies. However, we observe a considerable difference in the probability of damage in different wing regions. The wing damage is found to mainly result from two failure modes: wear and fracture

Rajabi,H., K.Stamm, E.Appel, and S.N.Gorb. 2018. Micro-morphological adaptations of the wing nodus to flight behaviour in four dragonfly species from the family Libellulidae (Odonata: Anisoptera). In press, Arthropod. Struct. Dev.
Abstract: Adult dragonflies can be divided into two major groups, perchers and fliers, exhibiting notably different flight behaviour. Previous studies have yielded conflicting results regarding the link between the wing macro-morphology and flight style in these two groups. In this study, we present the first systematic investigation of the micro-morphological differences of wings of percher and flier dragonflies in four closely related species from the family Libellulidae. Our results suggest that the shape and material composition of wing microstructural components and, in particular, the nodus are adapted to facilitate the specific wing functioning in fliers and perchers. The findings further indicate a decreasing trend in the area proportion of the soft resilin-dominated cuticle in the nodus in the series of species from typical perchers to typical fliers. Such a reduction in the resilin proportion in the nodus of fliers is associated with an increase in the wing aspect ratio. The knot-shaped protrusion at the nodus of perchers, which becomes notably smaller in that of strong fliers, is likely to act as a mechanical stopper, avoiding large wing displacements. This study aims to develop a novel framework for future research on the relationship between wing morphology and flight behaviour in dragonflies

Ramirez, A., Maldonado-Benitez, N., Mariani-Rios, A., Figueroa-Santiago, J., 2020. Dragonflies and damselflies (Odonata) from Puerto Rico: a checklist with notes on distribution and habitat. PeerJ. 8, e9711.
Abstract: Background: Conservation of tropical freshwater fauna requires a solid understanding of species biodiversity patterns. We provide an up to date annotated list of Odonata of Puerto Rico, which is based on current reports. The list is complemented with notes on the geographic and altitudinal distribution of this order on the island. We also compare current composition relative to early reports conducted when Puerto Rico was mostly an agricultural region. Methods: We surveyed adult Odonata all over Puerto Rico with the aid of undergraduate students. Students were trained on capturing, preserving, and data basing specimens. All material was centralized, identified by the lead author, and deposited in the Zoology Museum at the University of Puerto Rico (MZUPR), Rio Piedras campus. Surveys were complemented with focal collections by the authors and a literature review of published records for Puerto Rico and the Caribbean. We requested records from specialists to obtain the most complete list of species for the island. Results: An annotated list of Odonata from Puerto Rico is presented, reporting 49 species distributed in two suborders and four families. We provide information on species distribution among municipalities and elevations around Puerto Rico. A historic list of species was developed for the 1930s-1940s, when agriculture covered most of Puerto Rico, based on literature and museum specimens. Both current and historic records are similar and suggest that the Odonata fauna is dominated by generalist species and has changed little since the agricultural period. Our list provides a point of reference to understand biodiversity patterns in Puerto Rico and the Caribbean and for assessing the effects of land use change on aquatic insect diversity

Rasmussen, N.L., Rudolf, V.H., 2016. Individual and combined effects of two types of phenological shifts on predator-prey interactions. Ecology 97, 3414-3421.
Abstract: Timing of phenological events varies among years with natural variation in environmental conditions and is also shifting in response to climate change. These phenological shifts likely have many effects on species interactions. Most research on the ecological consequences of phenological shifts has focused on variation in simple metrics such as phenological firsts. However, for a population, a phenological event exhibits a temporal distribution with many attributes that can vary (e.g., mean, variance, skewness), each of which likely has distinct effects on interactions. In this study, we manipulated two attributes of the phenological distribution of a prey species to determine their individual and combined effects on predator-prey interactions. Specifically, we studied how shifts in the mean and variation around the mean (i.e., synchrony) of hatching by tadpoles (Hyla cinerea) affected interactions with predatory dragonfly naiads (Tramea carolina). At the end of larval development, we quantified survival and growth of predator and prey. We found that both types of shifts altered demographic rates of the prey; that the effects of synchrony shifts, though rarely studied, were at least as strong as those due to mean shifts; and that the combined effects of shifts in synchrony and mean were additive rather than synergistic. By dissecting the roles of two types of shifts, this study represents a significant step toward a comprehensive understanding of the complex effects of phenological shifts on species interactions. Embracing this complexity is critical for predicting how climate change will alter community dynamics

Rau, P., 1945. The night habits of the dragonfly, Ajax junius Dru. J. Comp Psychol. 38, 285.

Rebora, M., Salerno, G., Piersanti, S., Dell'otto, A., Gaino, E., 2012. Olfaction in dragonflies: electrophysiological evidence. J. Insect Physiol 58, 270-277.
Abstract: The problem of olfaction in Paleoptera (Odonata, Ephemeroptera) cannot be considered fully elucidated until now. These insects have been traditionally considered anosmic, because their brain lacks glomerular antennal lobes, typically involved in Neoptera odor perception. In order to understand if the presumed coeloconic olfactory receptors described on the antennal flagellum of adult Odonata are really functioning, we performed an electrophysiological investigation with electroantennogram (EAG) and single cell recordings (SCR), using Libellula depressa L. (Odonata, Libellulidae) as a model species. Odors representing different chemical classes such as (Z)-3-hexenyl acetate (acetate ester), (E)-2-hexenal, octanal (aldehydes), (Z)-3-hexen-1-ol (alcohol), propionic acid, butyric acid (carboxylic acids), and 1,4-diaminobutane (amine) were tested. Most of the tested chemicals elicited depolarizing EAG responses in both male and female antennae; SCR show unambiguously for the first time the presence of olfactory neurons in the antennae of L. depressa and strongly support the olfactory function of the coeloconic sensilla located on the antennal flagellum of this species. Electrophysiological activity may not necessarily indicate behavioral activity, and the biological role of olfactory responses in Odonata must be determined in behavioral bioassays. This study represents a starting point for further behavioral, electrophysiological, neuroanatomical and molecular investigation on Odonata olfaction, a research field particularly interesting owing to the basal position of Paleoptera, also for tracing evolutionary trends in insect olfaction.

Rivera,A.C. and J.A.Andres. 2002. Male coercion and convenience polyandry in a calopterygid damselfly. J. Insect. Sci. 2:14.
Abstract: Copulation in odonates requires female cooperation because females must raise their abdomen to allow intromission. Nevertheless in Calopteryx haemorrhoidalis haemorrhoidalis (Odonata) males commonly grasp ovipositing females and apparently force copulations. This has been interpreted as a consequence of extreme population density and male-male competition. We studied this behavior at two sites on a river that had different densities over three years. As predicted, at high densities most matings were forced (i.e. not preceded by courtship), but at low density most were preceded by courtship. Courtship matings were shorter at high density, but density did not affect the duration of forced matings. Females cooperated in forced matings even if they had very few mature eggs. Furthermore, females mated more times if they experienced higher male harassment during oviposition, and at low density second and subsequent matings were more likely to be forced. We interpret these results to mean that females engage in "convenience polyandry", because they gain more by accepting copulation than by resisting males. The results also suggest that females might trade copulations for male protection, because under extreme population density harassment by males is so intense that they can impede oviposition

Rocha-Ortega, M., Rodriguez, P., Bried, J., Abbott, J., Cordoba-Aguilar, A., 2020. Why do bugs perish? Range size and local vulnerability traits as surrogates of Odonata extinction risk. Proc. Biol. Sci. 287, 20192645.
Abstract: Despite claims of an insect decline worldwide, our understanding of extinction risk in insects is incomplete. Using bionomic data of all odonate (603 dragonflies and damselflies) North American species, we assessed (i) regional extinction risk and whether this is related to local extirpation; (ii) whether these two patterns are similar altitudinally and latitudinally; and (iii) the areas of conservation concern. We used geographic range size as a predictor of regional extinction risk and body size, thermal limits and habitat association as predictors of local extirpation. We found that (i) greater regional extinction risk is related to narrow thermal limits, lotic habitat use and large body size (this in damselflies but not dragonflies); (ii) southern species are more climate tolerant but with more limited geographic range size than northern species; and (iii) two priority areas for odonate conservation are the cold temperate to sub-boreal northeastern USA and the transversal neo-volcanic system. Our approach can be used to estimate insect extinction risk as it compensates for the lack of abundance data

Rodrigues, A.C.M., Bordalo, M.D., Golovko, O., Koba, O., Barata, C., Soares, A.M.V.M., Pestana, J.L.T., 2018. Combined effects of insecticide exposure and predation risk on freshwater detritivores. Ecotoxicology. 27, 794-802.
Abstract: Insecticides usually present in low concentrations in streams are known to impair behaviour and development of non-target freshwater invertebrates. Moreover, there is growing awareness that the presence of natural stressors, such as predation risk may magnify the negative effects of pesticides. This is because perception of predation risk can by itself lead to changes on behaviour and physiology of prey species. To evaluate the potential combined effects of both stressors on freshwater detritivores we studied the behavioural and developmental responses of Chironomus riparius to chlorantraniliprole (CAP) exposure under predation risk. Also, we tested whether the presence of a shredder species would alter collector responses under stress. Trials were conducted using a simplified trophic chain: Alnus glutinosa leaves as food resource, the shredder Sericostoma vittatum and the collector C. riparius. CAP toxicity was thus tested under two conditions, presence/absence of the dragonfly predator Cordulegaster boltonii. CAP exposure decreased leaf decomposition. Despite the lack of significance for interactive effects, predation risk marginally modified shredder effect on leaf decomposition, decreasing this ecosystem process. Shredders presence increased leaf decomposition, but impaired chironomids performance, suggesting interspecific competition rather than facilitation. C. riparius growth rate was decreased independently by CAP exposure, presence of predator and shredder species. A marginal interaction between CAP and predation risk was observed regarding chironomids development. To better understand the effects of chemical pollution to natural freshwater populations, natural stressors and species interactions must be taken into consideration, since both vertical and horizontal species interactions play their role on response to stress.

Rudolf, J., Wang, L.Y., Gorb, S.N., Rajabi, H., 2019. On the fracture resistance of dragonfly wings. J. Mech. Behav. Biomed. Mater. 99, 127-133.

Abstract: The biological success of insects is attributed to evolution of their wings. Over 400 million years of evolution, insect wings have become one of the most complex and adaptive locomotor structures in the animal kingdom. Although seemingly fragile, they satisfactorily perform their intended function under millions of cycles of repeated stress without failure. However, mechanistic origins of wing resistance to failure remain largely unknown. Most of our understanding of biomechanics of insect wing and flight is based on computer simulations and laboratory experiments. While those studies are needed to reveal certain aspects of wing design, a full understanding can be achieved only by linking obtained data with results of studies in natural conditions. In this study, we tracked the initiation and progression of wing damage of dragonflies in their natural habitats. By quantifying wing area loss over the flight season, we aimed to find a link between the wing structure and accumulated damage. Our results showed that dragonfly wings are exceptionally damage tolerant. Even at the very end of the flight season, the mean wing area loss does not exceed 1.3% of the total wing area. Crack termination, deflection, bifurcation and bridging are the mechanisms that raise the resistance of wings to fracture. This study suggests that insect wings are adapted not only for flight efficiency, but also for damage tolerance. Hence, they should be studied not only from the perspective of aerodynamic performance, but also from that of fracture mechanics

Saito, V.S., Valente-Neto, F., Rodrigues, M.E., de Oliveira, R.F., Siqueira, T., 2016. Phylogenetic clustering among aggressive competitors: evidence from odonate assemblages along a riverine gradient. Oecologia. 182, 219-229.

Abstract: Studies on phylogenetic community ecology usually infer habitat filtering when communities are phylogenetically clustered or competitive exclusion when communities are overdispersed. This logic is based on strong competition and niche similarity among closely related species-a less common phenomenon than previously expected. Dragonflies and damselflies are good models for testing predictions based on this logic because they behave aggressively towards related species due to mistaken identification of conspecifics. This behavior may drive communities toward phylogenetic overdispersion if closely related species frequently exclude each other. However, phylogenetically clustered communities could also be observed if habitat filtering and/or competitive asymmetry among distantly related species are major drivers of community assembling. We investigated the phylogenetic structure of odonate assemblages in central Brazil in a watershed characterized by variations in stream width, vegetation cover, aquatic vegetation, and luminosity. We observed general clustering in communities according to two indices of phylogenetic structure. Phylogenetic beta diversity coupled with Mantel tests and RLQ analysis evidenced a correlation between the riverine gradient and phylogenetic structure. Larger rivers with aquatic vegetation were characterized by anisopterans, while most zygopterans stayed in small and shaded streams. These results indicate niche conservatism in Odonata habitat occupancy, and that the environment is a major influence on the phylogenetic structure of these communities. We suggest that this is due to clade-specific ecophysiological requirements, and because closely related species may also have competitive advantages and dominate certain preferred habitats

Sanchez-Guillen, R.A., Martinez-Zamilpa, S.M., Jimenez-Cortes, J.G., Forbes, M.R., Cordoba-Aguilar, A., 2013. Maintenance of polymorphic females: do parasites play a role? Oecologia. 171, 105-113.

Abstract: The role of parasites in explaining maintenance of polymorphism is an unexplored research avenue. In odonates, female-limited color polymorphism (one female morph mimicking the conspecific male and one or more gynochromatic morphs) is widespread. Here we investigated whether parasitism contributes to color polymorphism maintenance by studying six species of female dimorphic damselflies using large databases of field-collected animals. We predicted that androchrome females (male mimics) would be more intensively parasitized than gynochrome females which is, according to previous studies, counterbalanced by the advantages of the former when evading male harassment compared to gynochrome females. Here we show that in Ischnura denticollis and Enallagma novahispaniae, androchrome females suffer from a higher degree of parasitism than gynochromatic females, and contrary to prediction, than males. Thus, our study has detected a correlation between color polymorphism and parasitic burden in odonates. This leads us to hypothesize that natural selection, via parasite pressure, can explain in part how androchrome and gynochrome female color morphs can be maintained. Both morphs may cope with parasites in a different way: given that androchrome females are more heavily parasitized, they may pay a higher fecundity costs, in comparison to gynochrome females

Sanchez-Guillen RA, Wellenreuther M, Chavez-Rios JR et al. 2017. Alternative reproductive strategies and the maintenance of female color polymorphism in damselflies. Ecol. Evol. 7: 5592-5602.
Abstract: Genetic polymorphisms are powerful model systems to study the maintenance of diversity in nature. In some systems, polymorphisms are limited to female coloration; these are thought to have arisen as a consequence of reducing male mating harassment, commonly resulting in negative frequency-dependent selection on female color morphs. One example is the damselfly Ischnura elegans, which shows three female color morphs and strong sexual conflict over mating rates. Here, we present research integrating male tactics, and female evolutionary strategies (female mating behavior and morph-specific female fecundity) in populations with different morph-specific mating frequencies, to obtain an understanding of mating rates in nature that goes beyond the mere measure of color frequencies. We found that female morph behavior differed significantly among but not within morphs (i.e., female morph behavior was fixed). In contrast, male tactics were strongly affected by the female morph frequency in the population. Laboratory work comparing morph-specific female fecundity revealed that androchrome females have lower fecundity than both of the gynochrome female morphs in the short term (3-days), but over a 10-day period one of the gynochrome female morphs became more fecund than either of the other morphs. In summary, our study found sex-specific dynamics in response to different morph frequencies and also highlights the importance of studying morph-specific fecundities across different time frames to gain a better understanding of the role of alternative reproductive strategies in the maintenance of female-limited color polymorphism

Sanchez-Guillen,R.A., A.Cordero-Rivera, A.Rivas-Torres, M.Wellenreuther, S.Bybee, B.Hansson, M.I.Velasquez-Velez, E.Realpe, J.R.Chavez-Rios, F.Villalobos, and H.Dumont. 2018. The evolutionary history of colour polymorphism in Ischnura damselflies. In press, J. Evol. Biol.
Abstract: A major challenge in evolutionary biology consists of understanding how genetic and phenotypic variation is created and maintained. In this study, we investigated the origin(s) and evolutionary patterns of the female-limited colour polymorphism in ischnuran damselflies. These consist of the presence of one to three colour morphs: one androchrome morph with a coloration that is similar to the male and two gynochrome morphs (infuscans and aurantiaca) with female-specific coloration. We (i) documented the colour and mating system of 44 of the 75 taxa within the genus Ischnura, (ii) reconstructed the evolutionary history of colour and mating system to identify the ancestral state, (iii) evaluated the stability of the colour morph status over time and (iv) tested for a correlation between colour and mating system. We found that the ancestral female colour of Ischnura was monomorphic and aurantiaca and that colour morph status changed over time, characterized by many gains and losses across the species tree. Our results further showed that colour polymorphism is significantly more frequent among polyandric species, whereas monandric species tend to be monomorphic. Research on some Ischnura species has shown that colour morphs have evolved to reduce male mating harassment, and our finding that the same phenotypic morphs have evolved multiple times (convergent evolution) suggests that several species in this genus might be experiencing similar selective pressures

Sanchez-Herrera, M., Beatty, C.D., Nunes, R., Salazar, C., Ware, J.L., 2020. An exploration of the complex biogeographical history of the Neotropical banner-wing damselflies (Odonata: Polythoridae). BMC. Evol. Biol. 20, 74.
Abstract: BACKGROUND: The New World Tropics has experienced a dynamic landscape across evolutionary history and harbors a high diversity of flora and fauna. While there are some studies addressing diversification in Neotropical vertebrates and plants, there is still a lack of knowledge in arthropods. Here we examine temporal and spatial diversification patterns in the damselfly family Polythoridae, which comprises seven genera with a total of 58 species distributed across much of Central and South America. RESULTS: Our time-calibrated phylogeny for 48 species suggests that this family radiated during the late Eocene (~ 33 Ma), diversifying during the Miocene. As with other neotropical groups, the Most Recent Common Ancestor (MRCA) of most of the Polythoridae genera has a primary origin in the Northern Andes though the MRCA of at least one genus may have appeared in the Amazon Basin. Our molecular clock suggests correlations with some major geographical events, and our biogeographical modeling (with BioGeoBEARS and RASP) found a significant influence of the formation of the Pebas and Acre systems on the early diversification of these damselflies, though evidence for the influence of the rise of the different Andean ranges was mixed. Diversification rates have been uniform in all genera except one-Polythore-where a significant increase in the late Pliocene (~ 3 mya) may have been influenced by recent Andean uplift. CONCLUSION: The biogeographical models implemented here suggest that the Pebas and Acre Systems were significant geological events associated with the diversification of this damselfly family; while diversification in the tree shows some correlation with mountain building events, it is possible that other abiotic and biotic changes during our study period have influenced diversification as well. The high diversification rate observed in Polythore could be explained by the late uplift of the Northern Andes. However, it is possible that other intrinsic factors like sexual and natural selection acting on color patterns could be involved in the diversification of this genus

Sanmartin-Villar, I., Cordero-Rivera, A., 2016. The inheritance of female colour polymorphism in Ischnura genei (Zygoptera: Coenagrionidae), with observations on melanism under laboratory conditions. PeerJ. 4, e2380.

Abstract: Current research on female colour polymorphism in Ischnura damselflies suggests that a balanced fitness trade-off between morphotypes contributes to the maintenance of polymorphism inside populations. The genetic inheritance system constitutes a key factor to understand morph fluctuation and fitness. Ischnura genei, an endemic species of some Mediterranean islands, has three female colour morphs, including one androchrome (male-coloured) and two gynochromes. In this study, we reared two generations of I. genei under laboratory conditions and tested male behavioural responses to female colour morphs in the field. We recorded ontogenetic colour changes and studied morph frequency in three populations from Sardinia (Italy). Morph frequencies of laboratory crosses can be explained by a model based on an autosomal locus with three alleles and sex-restricted expression, except for one crossing of 42 families with unexpected offspring. The allelic dominance relationship was androchrome > infuscans > aurantiaca. Old individuals reared in the laboratory exhibited different levels of melanism in variable extent depending on sex and morph. Results of model presentations indicate a male preference for gynochrome females and the lack of recognition of androchromes as potential mates. Aurantiaca females were the most frequent morph in the field (63-87%). Further studies in other populations and islands are needed to understand the maintenance of this polymorphism

Saxton, N.A., Powell, G.S., Bybee, S.M., 2020. Prevalence of leg regeneration in damselflies reevaluated: A case study in Coenagrionidae. Arthropod. Struct. Dev. 59, 100995.
Abstract: The leg regeneration capabilities of damselflies are understudied. Here we present the first data of regenerated limbs across a genus of damselfly based on adult specimens collected in the field to illustrate the prevalence of limb loss among nymphs. We show that this phenomenon is much more prevalent than previously thought, as 42 percent of individuals were found with regenerated limbs. Furthermore, we test for patterns within these data to begin to unravel the potential causes of limb loss in nymphal damselflies, showing that intrinsic factors such as sex and species cannot explain the patterns of limb loss pointing to environmental factors as the probable cause. We argue that Odonata limb regeneration provides a potentially unique perspective into the nymphal stage of these organisms

Schilder, R.J., Stewart, H., 2019. Parasitic gut infection in Libellula pulchella causes functional and molecular resemblance of dragonfly flight muscle to skeletal muscle of obese vertebrates. J. Exp. Biol. 222.
Abstract: We previously demonstrated the existence of a naturally occurring metabolic disease phenotype in Libellula pulchella dragonflies that shows high similarity to vertebrate obesity and type II diabetes, and is caused by a protozoan gut parasite. To further mechanistic understanding of how this metabolic disease phenotype affects fitness of male L. pulchella in vivo, we examined infection effects on in situ muscle performance and molecular traits relevant to dragonfly flight performance in nature. Importantly, these traits were previously shown to be affected in obese vertebrates. Similarly to obesity effects in rat skeletal muscle, dragonfly gut infection caused a disruption of relationships between body mass, flight muscle power output and alternative pre-mRNA splicing of troponin T, which affects muscle calcium sensitivity and performance in insects and vertebrates. In addition, when simulated in situ to contract at cycle frequencies ranging from 20 to 45 Hz, flight muscles of infected individuals displayed a left shift in power-cycle frequency curves, indicating a significant reduction in their optimal cycle frequency. Interestingly, these power-cycle curves were similar to those produced by flight muscles of non-infected teneral (i.e. physiologically immature) adult L. pulchella males. Overall, our results indicate that the effects of metabolic disease on skeletal muscle physiology in natural insect systems are similar to those observed in vertebrates maintained in laboratory settings. More generally, they indicate that study of natural, host-parasite interactions can contribute important insight into how environmental factors other than diet and exercise may contribute to the development of metabolic disease phenotypes

Schoenemann, B., Clarkson, E.N.K., 2020. Insights into a 429-million-year-old compound eye. Sci. Rep. 10, 12029.
Abstract: In all arthropods the plesiomorphic (ancestral character state) kind of visual system commonly is considered to be the compound eye. Here we are able to show the excellently preserved internal structures of the compound eye of a 429 Mya old Silurian trilobite, Aulacopleura koninckii (Barrande, 1846). It shows the characteristic elements of a modern apposition eye, consisting of 8 (visible) receptor cells, a rhabdom, a thick lens, screening pigment (cells), and in contrast to a modern type, putatively just a very thin crystalline cone. Functionally the latter underlines the idea of a primarily calcitic character of the lens because of its high refractive properties. Perhaps the trilobite was translucent. We show that this Palaeozoic trilobite in principle was equipped with a fully modern type of visual system, a compound eye comparable to that of living bees, dragonflies and many diurnal crustaceans. It is an example of excellent preservation, and we hope that this manuscript will be a starting point for more research work on fossil evidence, and to develop a deeper understanding of the evolution of vision

Schoenemann B, Parnaste H, Clarkson ENK. 2017. Structure and function of a compound eye, more than half a billion years old. Proc Natl Acad Sci U S A 114:13489-13494.
Abstract: Until now, the fossil record has not been capable of revealing any details of the mechanisms of complex vision at the beginning of metazoan evolution. Here, we describe functional units, at a cellular level, of a compound eye from the base of the Cambrian, more than half a billion years old. Remains of early Cambrian arthropods showed the external lattices of enormous compound eyes, but not the internal structures or anything about how those compound eyes may have functioned. In a phosphatized trilobite eye from the lower Cambrian of the Baltic, we found lithified remnants of cellular systems, typical of a modern focal apposition eye, similar to those of a bee or dragonfly. This shows that sophisticated eyes already existed at the beginning of the fossil record of higher organisms, while the differences between the ancient system and the internal structures of a modern apposition compound eye open important insights into the evolution of vision

Schreiner, G.D., Duffy, L.A., Brown, J.M., 2020. Thermal response of two sexually dimorphic Calopteryx (Odonata) over an ambient temperature range. Ecol. Evol. 10, 12341-12347.
Abstract: Organisms may internally or behaviorally regulate their body temperatures or conform to the ambient air temperatures. Previous evidence is mixed on whether wing pigmentation influences thermoregulation in various odonates.We investigated the thermal response of sympatric North American Calopteryx aequabilis and Calopteryx maculata with a thermal imaging study across a 25 degrees C ambient temperature range.We found that regressions of thorax temperature on ambient temperature standardized by species had similar slopes for male and female C. maculata, but females were consistently 1.5 degrees C warmer than males. In contrast, the sexes of C. aequabilis differed in slope, with C. aequabilis females having a slope less than 1.0 and males having a slope greater than 1.0.We found that regressions of thorax temperature on ambient temperature standardized by sex had similar slopes for males and females of both species, but C. maculata females were consistently 2.1 degrees C warmer than C. aequabilis females.Given that C. aequabilis is strongly sexually dimorphic in pigment, but C. maculata is not, our findings suggest that wing pigmentation may influence thermal response rate in sympatric populations of both species

Sherratt, T.N., Laird, R.A., Hassall, C., Lowe, C.D., Harvey, I.F., Watts, P.C., Cordero-Rivera, A., Thompson, D.J., 2010. Empirical evidence of senescence in adult damselflies (Odonata: Zygoptera). J. Anim Ecol. 79, 1034-1044.
Abstract: 1. Age-dependent increases in mortality have been documented in a variety of species of insect under laboratory conditions. However, while strong statistical evidence has been presented for senescence in vertebrate populations in the wild, we know little about the rate and shape of senescence in wild populations of insects. 2. Odonates (damselflies and dragonflies) provide excellent candidate species for evaluating demographic senescence as they are large enough to be marked individually and they are easily re-sighted without recapture. The prevailing opinion - based entirely on qualitative examination of the declines in log numbers alive with time since marking - is that odonates exhibit age-independent daily survivorship. 3. Here, we examine mark-recapture data on the Azure Damselfly Coenagrion puella over two consecutive seasons. For the first time, we evaluate and compare the fit of quantitative models that not only account for weather-dependent daily variation in daily re-sighting rates, but also age-dependent variation in daily survivorship. 4. Models with age-dependent declines in daily survivorship provide a more parsimonious explanation for the data than similar models without these age-dependent effects. In general, models in which mortality increases in an exponential (Gompertz) fashion explain the mark-recapture sequences more efficiently than a range of alternative models, including those in which mortality increases as a power function (Weibull) or reaches a plateau (logistic). These results are indicative of a general senescent decline in physiological functioning, which is particularly marked after 15 days as a mature adult. 5. Weather (temperature, sun and precipitation) and initial mite load influenced the probability of daily re-sighting. Weather and mite load also influenced daily survivorship, but their effects differed between seasons. 6. Overall, fitting models with age as an explicit covariate demonstrates that odonates do indeed senesce. This contradicts previously held assumptions that Odonata do not exhibit age-dependent survivorship in the wild

Sherratt, T.N., Hassall, C., Laird, R.A., Thompson, D.J., Cordero-Rivera, A., 2011. A comparative analysis of senescence in adult damselflies and dragonflies (Odonata). J. Evol. Biol. 24, 810-822.
Abstract: Any population whose members are subject to extrinsic mortality should exhibit an increase in mortality with age. Nevertheless, the prevailing opinion is that populations of adult damselflies and dragonflies do not exhibit such senescence. Here, we challenge this contention by fitting a range of demographic models to the data on which these earlier conclusions were based. We show that a model with an exponential increase in age-related mortality (Gompertz) generally provides a more parsimonious fit than alternative models including age-independent mortality, indicating that many odonates do indeed senesce. Controlling for phylogeny, a comparison of the daily mortality of 35 odonate species indicates that although male and female mortalities are positively correlated, mortality tends to be higher in males of those species that exhibit territoriality. Hence, we show for the first time that territoriality may impose a survivorship cost on males, once the underlying phylogenetic relationships are accounted for

Siepielski, A.M., Beaulieu, J.M., 2017. Adaptive evolution to novel predators facilitates the evolution of damselfly species range shifts. Evolution. 71, 974-984.
Abstract: Most species have evolved adaptations to reduce the chances of predation. In many cases, adaptations to coexist with one predator generate tradeoffs in the ability to live with other predators. Consequently, the ability to live with one predator may limit the geographic distributions of species, such that adaptive evolution to coexist with novel predators may facilitate range shifts. In a case study with Enallagma damselflies, we used a comparative phylogenetic approach to test the hypothesis that adaptive evolution to live with a novel predator facilitates range size shifts. Our results suggest that the evolution of Enallagma shifting from living in ancestral lakes with fish as top predators, to living in lakes with dragonflies as predators, may have facilitated an increase in their range sizes. This increased range size likely arose because lakes with dragonflies were widespread, but unavailable as a habitat throughout much of the evolutionary history of Enallagma because they were historically maladapted to coexist with dragonfly predators. Additionally, the traits that have evolved as defenses against dragonflies also likely enhanced damselfly dispersal abilities. While many factors underlie the evolutionary history of species ranges, these results suggest a role for the evolution of predator-prey interactions.

Sigutova, H., Pyszko, P., Valusak, J., Dolny, A., 2022. Highway stormwater ponds as islands of Odonata diversity in an agricultural landscape. Sci. Total Environ. 837, 155774.
Abstract: Stormwater management ponds, which are constructed to retain excess runoff and pollutants from traffic, play an important role in the freshwater biodiversity in highly modified areas. However, their roles in agricultural and semi-natural landscapes remain largely unexplored. In this study, we used Odonata as a bioindicator to compare a set of highway stormwater ponds and surrounding ponds within an agricultural and semi-natural landscape to examine the extent to which stormwater ponds act as biodiversity refuges. We analyzed the differences in environmental parameters and the richness, compositions, and conservation values of the odonate communities of stormwater and surrounding ponds. We also examined the factors controlling the differences in the communities of both pond types. The stormwater ponds were smaller, less eutrophicated, less shaded by trees, less stocked with fish, and less connected with other waterbodies than the surrounding ponds. However, they had a higher plant diversity and pH values and were more densely overgrown with vegetation. Compared with surrounding ponds, stormwater ponds had a higher Odonata richness and beta-diversity, but their taxonomic distinctness was significantly lower. Therefore, stormwater ponds hosted more variable communities but their assemblages were taxonomically similar. Indicator species were only identified in stormwater ponds. Furthermore, stormwater ponds harbored more species with higher conservation values. The most important factors affecting the differences between stormwater and surrounding ponds were the trophic state, relative tree shading, and fish stocking intensity. With their increase, the richness and rarity decreased. Our results highlight the potential of stormwater ponds to enhance the biodiversity outside urban areas by providing specific habitat conditions that are unique to the surrounding agricultural landscape. In addition, we suggest management practices that can be used to enhance their biodiversity conservation function

Simon, E., Kis, O., Jakab, T., Kolozsvari, I., Malnas, K., Harangi, S., Baranyai, E., Miskolczi, M., Tothmeresz, B., Devai, G., 2017. Assessment of contamination based on trace element concentrations in Gomphus flavipes (Odonata: Insect) larvae of the Upper Tisza Region. Ecotoxicol. Environ. Saf 136, 55-61.
Abstract: Odonata larvae are frequently used to assess the contamination of aquatic systems, because they tolerate a wide range of chemical and biological conditions in freshwater systems. In early 2000, the sediments of the Hungarian section of the River Tisza and the River Szamos were strongly enriched with heavy metals by an accidental mining spill. Earlier studies demonstrated higher contamination levels in the Szamos than in the Tisza, based on sediment analysis. The aim of our study was to assess the contamination in the Upper Tisza Region, along the upper reach of the Tisza, and the lower reach of the Szamos, based on the trace element concentrations of the Gomphus flavipes larvae. We collected 269 dragonfly specimens for the analyses. The Al, Ba, Cr, Cu, Fe, Mn, Pb, Sr and Zn element contents were analysed in the dragonfly larvae by microwave plasma atomic emission spectrometry (MP-AES). Significantly higher Ba and Cu concentrations were found in the dragonfly larvae of the Tisza than the Szamos. In spite of this, the Cr, Mn, Pb, Sr and Zn concentration was significantly lower in the dragonfly larvae of the Tisza than the Szamos. For all trace elements significant differences were found along the Tisza. Significant differences were also found in all trace element concentrations of dragonfly larvae among studied localities in the Szamos, except in the cases of Al and Ba. Our results demonstrated that the Szamos was more contaminated with Cr, Mn, Pb, Sr and Zn than the Tisza, but that the Tisza was more contaminated with Ba and Cu than the Szamos, based on the trace element concentrations in Gomphus flavipes larvae, which was likely to have been caused by the tributaries of the Tisza. In summary, our results indicated a continuous pollution of the Tisza and the Szamos and their tributaries

Sirois-Delisle, C., Kerr, J.T., 2021. Climate change aggravates non-target effects of pesticides on dragonflies at macroecological scales. Ecol. Appl. e02494.
Abstract: Critical gaps in understanding how species respond to environmental change limit our capacity to address conservation risks in a timely way. Here, we examine the direct and interactive effects of key global change drivers, including climate change, land use change, and pesticide use, on persistence of 104 odonate species between two time periods (1980-2002 and 2008-2018) within 100 X 100 km quadrats across the United States using phylogenetic mixed models. Non-target effects of pesticides interacted with higher maximum temperatures to contribute to odonate declines. Closely related species responded similarly to global change drivers, indicating a potential role of inherited traits in species' persistence or decline. Species shifting their range to higher latitudes were more robust to negative impacts of global change drivers generally. Inherited traits related to dispersal abilities and establishment in new places may govern both species' acclimation to global change and their abilities to expand their range limits, respectively. This work is among the first to assess effects of climate change, land use change, and land use intensification together on Odonata, a significant step that improves understanding of multi-species effects of global change on invertebrates, and further identifies conditions contributing to global insect loss

Sniegula, S., Golab, M.J., Drobniak, S.M., Johansson, F., 2016. Seasonal time constraints reduce genetic variation in life-history traits along a latitudinal gradient. J. Anim Ecol. 85, 187-198.
Abstract: Time constraints cause strong selection on life-history traits, because populations need to complete their life cycles within a shorter time. We therefore expect lower genetic variation in these traits in high- than in low-latitude populations, since the former are more time-constrained. The aim was to estimate life-history traits and their genetic variation in an obligately univoltine damselfly along a latitudinal gradient of 2730 km. Populations were grown in the laboratory at temperatures and photoperiods simulating those at their place of origin. In a complementary experiment, individuals from the same families were grown in constant temperature and photoperiod that mimicked average conditions across the latitude. Development time and size was faster and smaller, respectively, and growth rate was higher at northern latitudes. Additive genetic variance was very low for life-history traits, and estimates for egg development time and larval growth rate showed significant decreases towards northern latitudes. The expression of genetic effects in life-history traits differed considerably when individuals were grown in constant rather than simulated and naturally variable conditions. Our results support strong selection by time constraints. They also highlight the importance of growing organisms in their native environment for correct estimates of genetic variance at their place of origin. Our results also suggest that the evolutionary potential of life-history traits is very low at northern compared to southern latitudes, but that changes in climate could alter this pattern

Sniegula, S., Janssens, L., Stoks, R., 2017. Integrating multiple stressors across life stages and latitudes: Combined and delayed effects of an egg heat wave and larval pesticide exposure in a damselfly. Aquat. Toxicol. 186, 113-122.
Abstract: To understand the effects of pollutants in a changing world we need multistressor studies that combine pollutants with other stressors associated with global change such as heat waves. We tested for the delayed and combined impact of a heat wave during the egg stage and subsequent sublethal exposure to the pesticide esfenvalerate during the larval stage on life history and physiology in the larval and adult stage of the damselfly Lestes sponsa. We studied this in a common garden experiment with replicated central- and high latitude populations to explore potential effects of local thermal adaptation and differences in life history shaping the multistressor responses. Exposure of eggs to the heat wave had no effect on larval traits, yet had delayed costs (lower fat and flight muscle mass) in the adult stage thereby crossing two life history transitions. These delayed costs were only present in central-latitude populations potentially indicating their lower heat tolerance. Exposure of larvae to the pesticide reduced larval growth rate and prolonged development time, and across metamorphosis reduced the adult fat content and the flight muscle mass, yet did not affect the adult heat tolerance. The pesticide-induced delayed emergence was only present in the slower growing central-latitude larvae, possibly reflecting stronger selection to keep development fast in the more time-constrained high-latitude populations. We observed no synergistic interactions between the egg heat wave and the larval pesticide exposure. Instead the pesticide-induced reduction in fat content was only present in animals that were not exposed to the egg heat wave. Our results based on laboratory conditions highlight that multistressor studies should integrate across life stages to fully capture cumulative effects of pollutants with other stressors related to global change.

Sniegula, S., Golab, M.J., Johansson, F., 2019. Size-mediated priority and temperature effects on intra-cohort competition and cannibalism in a damselfly. J. Anim Ecol. 88, 637-648.
Abstract: A shift in the relative arrival of offspring, for example a shift in hatching time, can affect competition at the intraspecific level through size-mediated priority effects, where the larger individuals gain more resources. These priority effects are likely to be affected by climate warming and the rate of intraspecific predation, that is cannibalism. In a laboratory experiment, we examined size-mediated priority effects in larvae of the univoltine damselfly, Lestes sponsa, at two different temperatures (21 and 23 degrees C). We created three size groups of larvae by manipulating hatching time: early hatched with a large size (extra-advanced), intermediate hatched with an intermediate size (advanced) and late hatched with a small size (non-advanced). Thereafter, we reared the larvae from these groups in non-mixed and mixed groups of 12 larvae. We found strong priority and temperature effects. First, extra-advanced larvae most often had higher survival, growth and development rates than non-advanced larvae in mixed groups, compared to groups that consisted of only extra-advanced larvae. Second, temperature increased growth and development rates and cannibalism. However, the strength of priority effects did not differ between the two experimental temperatures, because there was no statistical interaction between temperature and treatments. That is, the mixed and non-mixed groups of non-advanced, advanced and extra-advanced larvae showed the same relative change in life-history traits across the two temperatures. Non-advanced and advanced larvae had similar or higher growth rate and mass in mixed groups compared to non-mixed groups, suggesting that predation from advanced larvae in the mixed group released resources for the non-advanced and advanced larvae that survived despite cannibalism risk. Thus, a thinning effect occurred due to cannibalism caused by priority effects. The results suggest that a shift in the relative arrival of offspring can cause temperature-dependent priority effects, mediated through cannibalism, growth and development, which may change the size distribution and abundance of emerging aquatic insects

Spath, J., Brodin, T., McCallum, E., Cerveny, D., Fick, J., Nording, M.L., 2022. Metabolomics reveals changes in metabolite profiles due to growth and metamorphosis during the ontogeny of the northern damselfly. J. Insect Physiol 136, 104341.
Abstract: Many insects have complex life cycles where a drastic ontogenetic change happens between the larval stages and the adult stage, i.e. metamorphosis. Damselflies (order Odonata, suborder Zygoptera) are widely distributed and ecologically important semi-aquatic insects with a complex life cycle. Phenotypic changes over damselfly ontogeny have been documented, however, if and how metabolite profiles are also changing is currently unknown. Here we used a metabolomics methodology to gain insights into the metabolic changes during the life cycle of the Northern damselfly (Coenagrion hastulatum). Hatchlings of wild-caught damselflies were reared in the laboratory and metabolomics analyses using liquid chromatography and gas chromatography coupled to mass spectrometry were carried out at three larval stages and on adult damselflies. Additionally, a subset of larvae was exposed to wastewater effluent to assess how metabolite profiles responded to an environmental stressor. A total of 212 compounds belonging to several classes (e.g. amino acids, fatty acids, sugars) were annotated. Across metamorphosis, we found that damselflies shifted from protein catabolism to lipid catabolism. Wastewater effluent exposure resulted in ontogenetic stage-dependent changes of individual metabolites, but not to a marked extent. Overall, our study is one of the first to describe changes of metabolite profiles during ontogeny of an insect, and it provides a first step towards a greater understanding of the physiological changes occurring during general insect-but especially damselfly-ontogeny

Starr, S.M., McIntyre, N.E., 2020. Effects of Water Temperature Under Projected Climate Change on the Development and Survival of Enallagma civile (Odonata: Coenagrionidae). Environ. Entomol. 49, 230-237.
Abstract: Current climate projections for the Great Plains of North America indicate markedly increased air temperatures by the end of the current century. Because the Great Plains contains >80,000 intermittent wetlands that serve as irreplaceable wildlife habitat, this projected warming may have profound effects throughout a continental-scale trophic network. However, little research has been done to determine how projected warming may affect the growth, development, or survival of even common species in this region. We conducted laboratory warming experiments, using an abundant amphibious predatory insect, Enallagma civile (Hagen, 1861), as a model organism, to determine whether projected warming may affect development or survival. Eggs were collected and reared under four water temperature regimes representing current (26 degrees C) and projected future conditions (32, 38, and 41 degrees C). Nymph body size after each molt, development rate, and deaths were recorded. Elevated water temperatures were found to significantly affect the survivorship of E. civile eggs and nymphs as well as adult body size at emergence: an increase in temperature incurred a decrease in survival and size. Nymphs in the two hotter treatments were smaller and had low survivorship whereas individuals in the cooler temperatures generally survived to adulthood and were larger. Nymphs reared at 32 degrees C experienced accelerated ontogenetic development compared with the other temperatures, going from egg to adult in 26 d. Projected elevated temperatures may, thus, be both advantageous and detrimental, causing concern for aquatic invertebrates in this region in the future

Start, D., Gilbert, B., 2019. Trait variation across biological scales shapes community structure and ecosystem function. Ecology 100, e02769.
Abstract: Trait variation underlies our understanding of the patterns and importance of biodiversity, yet we have a poor understanding of how variation at different levels of biological organization structures communities and ecosystems. Here, we use a mesocosm experiment to test for the effects of a larval dragonfly functional trait on community and ecosystem dynamics by creating artificial populations to mirror within- and between-population trait variation observed in our study area. Specifically, we manipulate variation in activity rate, a key functional trait shaping food webs, across three levels of biological organization: within-populations (differences in trait variation in a population), among-populations (differences in population mean trait values), and among-species (species-level differences of co-occurring dragonflies). We show that differences in activity rate alter prey communities, trophic cascades, and multiple ecosystem processes. However, trait variation among populations had much larger effects than differences between co-occurring species or even the presence of a predator, whereas within-population variation had a relatively minor impact. Interestingly, combined with earlier work in the same system, our study suggests that the relative importance of species vs. individual level differences for ecosystem functioning will depend on the spatial scale considered. Ecological processes, including biodiversity-ecosystem-functioning relationships, cannot be understood without accounting for trait variation across biological scales of organization, including at fine scales

Start, D., Kirk, D., Shea, D., Gilbert, B., 2017. Cannibalism by damselflies increases with rising temperature. Biol. Lett. 13/5, in press.
Abstract: Trophic interactions are likely to change under climate warming. These interactions can be altered directly by changing consumption rates, or indirectly by altering growth rates and size asymmetries among individuals that in turn affect feeding. Understanding these processes is particularly important for intraspecific interactions, as direct and indirect changes may exacerbate antagonistic interactions. We examined the effect of temperature on activity rate, growth and intraspecific size asymmetries, and how these temperature dependencies affected cannibalism in Lestes congener, a damselfly with marked intraspecific variation in size. Temperature increased activity rates and exacerbated differences in body size by increasing growth rates. Increased activity and changes in body size interacted to increase cannibalism at higher temperatures. We argue that our results are likely to be general to species with life-history stages that vary in their temperature dependencies, and that the effects of climate change on communities may depend on the temperature dependencies of intraspecific interactions.

Start, D., McCauley, S., Gilbert, B., 2018. Physiology underlies the assembly of ecological communities. Proc. Natl. Acad. Sci. U. S. A 115, 6016-6021.
Abstract: Trait-based community ecology promises an understanding of the factors that determine species abundances and distributions across habitats. However, ecologists are often faced with large suites of potentially important traits, making generalizations across ecosystems and species difficult or even impossible. Here, we hypothesize that key traits structuring ecological communities may be causally dependent on common physiological mechanisms and that elucidating these mechanisms can help us understand the distributions of traits and species across habitats. We test this hypothesis by investigating putatively causal relationships between physiological and behavioral traits at the species and community levels in larvae of 17 species of dragonfly that co-occur at the landscape scale but segregate among lakes. We use tools borrowed from phenotypic selection analyses to show that physiological traits underlie activity rate, which has opposing effects on foraging and predator avoidance behaviors. The effect of activity on these behaviors ultimately shapes species distributions and community composition in habitats with either large-bodied fish or invertebrates as top predators. Remarkably, despite the inherent complexity of ecological communities, the expression of just two biomolecules accounts for a high proportion of the variation in behavioral traits and hence, dragonfly community composition between habitats. We suggest that causal relationships among traits can drive species distributions and community assembly.

St Clair, C.R., Fuller, C.A., 2018. Atrazine Exposure Influences Immunity in the Blue Dasher Dragonfly, Pachydiplax longipennis (Odonata: Libellulidae). J. Insect Sci. 18.
Abstract: Agricultural runoff containing herbicide is known to have adverse effects on freshwater organisms. Aquatic insects are particularly susceptible, and herbicide runoff has the potential to affect immunity in this group. Here we examined the effect of ecologically relevant levels of atrazine, an herbicide commonly used in the United States, on immune function in larvae of the blue dasher dragonfly (Odonata: Libelluludae, Pachydiplax longipennis Burmeister 1839) during a long-term exposure at ecologically relevant concentrations. Larvae were exposed to concentrations of 0, 1, 5, and 10 ppb atrazine for 3 or 6 wk. Hemocyte counts, hemolymph phenyloxidase (PO) activity, cuticular PO, and gut PO were measured at the end of each trial period as indicators of immune system strength. Atrazine concentration had a significant effect on hemocyte counts after controlling for larval size. There was a significant interaction between time and concentration for hemolymph PO, cuticular PO, and a marginal interaction for gut PO. The effect of atrazine on the measured immune parameters was often nonmonotonic, with larger effects observed at intermediate concentrations. Therefore, atrazine affects both hemocyte numbers and PO activity over time in P. longipennis, and the changed immune function demonstrated in this study is likely to modify susceptibility to pathogens, alter wound healing, and may decrease available energy for growth and metamorphosis.

Stoks, R., Cordoba-Aguilar, A., 2012. Evolutionary ecology of Odonata: a complex life cycle perspective. Annu. Rev. Entomol. 57, 249-265.
Abstract: Most insects have a complex life cycle with ecologically different larval and adult stages. We present an ontogenetic perspective to analyze and summarize the complex life cycle of Odonata within an evolutionary ecology framework. Morphological, physiological, and behavioral pathways that generate carry-over effects across the aquatic egg and larval stages and the terrestrial adult stage are identified. We also highlight several mechanisms that can decouple life stages including compensatory mechanisms at the larval and adult stages, stressful and stochastic events during metamorphosis, and stressful environmental conditions at the adult stage that may overrule effects of environmental conditions in the preceding stage. We consider the implications of these findings for the evolution, selection, and fitness of odonates; underline the role of the identified numerical and carry-over effects in shaping population and metapopulation dynamics and the community structure across habitat boundaries; and discuss implications for applied conservation issues

Su, G., Dudley, R., Pan, T., Zheng, M., Peng, L., Li, Q., 2020. Maximum aerodynamic force production by the wandering glider dragonfly (Pantala flavescens, Libellulidae). J. Exp. Biol. 223.
Abstract: Maximum whole-body force production can influence behavioral outcomes for volant taxa, and may also be relevant to aerodynamic optimization in microair vehicles. Here, we describe a new method for measuring maximum force production in free-flying animals, and present associated data for the wandering glider dragonfly. Flight trajectories were repeatedly acquired from pull-up responses by insects dropped in mid-air with submaximal loads attached beneath the center of body mass. Forces were estimated from calculations of the maximum time-averaged acceleration through time, and multiple estimates were obtained per individual so as to statistically facilitate approximation of maximum capacity through use of the Weibull distribution. On a group level, wandering glider dragonflies were here estimated to be capable of producing total aerodynamic force equal to approximately 4.3 times their own body weight, a value which significantly exceeds earlier estimates made for load-lifting dragonflies, and also for other volant taxa in sustained vertical load-lifting experiments. Maximum force production varied isometrically with body mass. Falling and recovery flight with submaximal load represents a new context for evaluating limits to force production by flying animals

Suarez-Tovar, C.M., Sarmiento, C.E., 2016. Beyond the wing planform: morphological differentiation between migratory and non-migratory dragonfly species. J. Evol. Biol. 29, 690-703.
Abstract: Migration is a significant trait of the animal kingdom that can impose a strong selective pressure on several structures to overcome the amount of energy that the organism invests in this particular behavior. Wing linear dimensions and planform have been a traditional focus in the study of flying migratory species; however, other traits could also influence aerodynamic performance. We studied the differences in several flight-related traits of migratory and non-migratory Libellulid species in a phylogenetic context to assess their response to migratory behavior. Wings were compared by linear measurements, shape, surface corrugations, and microtrichia number. Thorax size and pilosity were also compared. Migratory species have larger and smoother wings, a larger anal lobe that is reached through an expansion of the discoidal region, and longer and denser thoracic pilosity. These differences might favor gliding as an energy-saving displacement strategy. Most of the changes were identified in the hind wings. No differences were observed for the thorax linear dimensions, wetted aspect ratio, some wing corrugations, or the wing microtrichiae number. Similar changes in the hind wing are present in clades where migration evolved. Our results emphasize that adaptations to migration through flight may extend to characteristics beyond the wing planform and that some wing characteristics in libellulids converge in response to migratory habits whereas other closely related structures remain virtually unchanged. Additionally, we concluded that despite a close functional association and similar selective pressures on a structure, significant differences in the magnitude of the response may be present in its components. This article is protected by copyright. All rights reserved

Suhonen, J., Honkavaara, J., Rantala, M.J., 2010. Activation of the immune system promotes insect dispersal in the wild. Oecologia. 162, 541-547.
Abstract: Dispersal has important ecological and evolutionary consequences but is a poorly understood behaviour. We experimentally tested whether activation of the immune system affects dispersal in male damselflies, Calopteryx virgo, from three natural populations. We show that males that contained an experimentally inserted artificial pathogen, a nylon monofilament implant, had higher dispersal rates and flew further than control males, but not further than sham manipulated males. Our data suggest that dispersal may reduce the risk of further infections if immune system activation indicates high parasite infection risk in the present habitat. We, thus, suggest that parasites may play an important role in the evolution of host dispersal

Suhonen, J., Korkeamaki, E., Salmela, J., Kuitunen, M., 2014. Risk of local extinction of Odonata freshwater habitat generalists and specialists. Conserv. Biol. 28, 783-789.
Abstract: Understanding the risk of a local extinction in a single population relative to the habitat requirements of a species is important in both theoretical and applied ecology. Local extinction risk depends on several factors, such as habitat requirements, range size of species, and habitat quality. We studied the local extinctions among 31 dragonfly and damselfly species from 1930 to 1975 and from 1995 to 2003 in Central Finland. We tested whether habitat specialists had a higher local extinction rate than generalist species. Approximately 30% of the local dragonfly and damselfly populations were extirpated during the 2 study periods. The size of the geographical range of the species was negatively related to extinction rate of the local populations. In contrast to our prediction, the specialist species had lower local extinction rates than the generalist species, probably because generalist species occurred in both low- and high-quality habitat. Our results are consistent with source-sink theory

Suhonen, J., Ilvonen, J.J., Korkeamaki, E., Nokkala, C., Salmela, J., 2022. Using functional traits and phylogeny to understand local extinction risk in dragonflies and damselflies (Odonata). Ecol. Evol. 12, e8648.
Abstract: Understanding the risk of local extinction of a species is vital in conservation biology, especially now when anthropogenic disturbances and global warming are severely changing natural habitats. Local extinction risk depends on species traits, such as its geographical range size, fresh body mass, dispersal ability, length of flying period, life history variation, and how specialized it is regarding its breeding habitat. We used a phylogenetic approach because closely related species are not independent observations in the statistical tests. Our field data contained the local extinction risk of 31 odonate (dragonflies and damselflies) species from Central Finland. Species relatedness (i.e., phylogenetic signal) did not affect local extinction risk, length of flying period, nor the geographical range size of a species. However, we found that closely related species were similar in hind wing length, length of larval period, and habitat of larvae. Both phylogenetically corrected (PGLS) and uncorrected (GLM) analysis indicated that the geographical range size of species was negatively related to local extinction risk. Contrary to expectations, habitat specialist species did not have higher local extinction rates than habitat generalist species nor was it affected by the relatedness of species. As predicted, species' long larval period increased, and long wings decreased the local extinction risk when evolutionary relatedness was controlled. Our results suggest that a relatively narrow geographical range size is an accurate estimate for a local extinction risk of an odonate species, but the species with long life history and large habitat niche width of adults increased local extinction risk. Because the results were so similar between PGLS and GLM methods, it seems that using a phylogenetic approach does not improve predicting local extinctions

Supple, J.A., Pinto-Benito, D., Khoo, C., Wardill, T.J., Fabian, S.T., Liu, M., Pusdekar, S., Galeano, D., Pan, J., Jiang, S., Wang, Y., Liu, L., Peng, H., Olberg, R.M., Gonzalez-Bellido, P.T., 2020. Binocular Encoding in the Damselfly Pre-motor Target Tracking System. Curr. Biol. 30 , 645-656.
Abstract: Akin to all damselflies, Calopteryx (family Calopterygidae), commonly known as jewel wings or demoiselles, possess dichoptic (separated) eyes with overlapping visual fields of view. In contrast, many dragonfly species possess holoptic (dorsally fused) eyes with limited binocular overlap. We have here compared the neuronal correlates of target tracking between damselfly and dragonfly sister lineages and linked these changes in visual overlap to pre-motor neural adaptations. Although dragonflies attack prey dorsally, we show that demoiselles attack prey frontally. We identify demoiselle target-selective descending neurons (TSDNs) with matching frontal visual receptive fields, anatomically and functionally homologous to the dorsally positioned dragonfly TSDNs. By manipulating visual input using eyepatches and prisms, we show that moving target information at the pre-motor level depends on binocular summation in demoiselles. Consequently, demoiselles encode directional information in a binocularly fused frame of reference such that information of a target moving toward the midline in the left eye is fused with information of the target moving away from the midline in the right eye. This contrasts with dragonfly TSDNs, where receptive fields possess a sharp midline boundary, confining responses to a single visual hemifield in a sagittal frame of reference (i.e., relative to the midline). Our results indicate that, although TSDNs are conserved across Odonata, their neural inputs, and thus the upstream organization of the target tracking system, differ significantly and match divergence in eye design and predatory strategies. 

Suvorov, A., Jensen, N.O., Sharkey, C.R., Fujimoto, M.S., Bodily, P., Wightman, H.M., Ogden, T.H., Clement, M.J., Bybee, S.M., 2016. Opsins have evolved under the permanent heterozygote model: insights from phylotranscriptomics of Odonata. Mol. Ecol. 26: 1306-1322.
Abstract: Gene duplication plays a central role in adaptation to novel environments by providing new genetic material for functional divergence and evolution of biological complexity. Several evolutionary models have been proposed for gene duplication to explain how new gene copies are preserved by natural selection but these models have rarely been tested using empirical data. Opsin proteins, when combined with a chromophore, form a photopigment that is responsible for the absorption of light, the first step in the phototransduction cascade. Adaptive gene duplications have occurred many times within the animal opsins gene family, leading to novel wavelength sensitivities. Consequently, opsins are an attractive choice for the study of gene duplication evolutionary models. Odonata (dragonflies and damselflies) have the largest opsin repertoire of any insect currently known. Additionally, there is tremendous variation in opsin copy number between species, particularly in the long wavelength sensitive (LWS) class. Using comprehensive phylotranscriptomic and statistical approaches we tested various evolutionary models of gene duplication. Our results suggest that both the blue sensitive (BS) and LWS opsin classes were subjected to strong positive selection that greatly weakens after multiple duplication events, a pattern that is consistent with the permanent heterozygote model. Due to the immense interspecific variation and duplicability potential of opsin genes among odonates, they represent a unique model system to test hypotheses regarding opsin gene duplication and diversification at the molecular level.

Suvorov, A., Scornavacca, C., Fujimoto, M.S., Bodily, P., Clement, M., Crandall, K.A., Whiting, M.F., Schrider, D.R., Bybee, S.M., 2021. Deep ancestral introgression shapes evolutionary history of dragonflies and damselflies. Syst. Biol.
Abstract: Introgression is an important biological process affecting at least 10% of the extant species in the animal kingdom. Introgression significantly impacts inference of phylogenetic species relationships where a strictly binary tree model cannot adequately explain reticulate net-like species relationships. Here we use phylogenomic approaches to understand patterns of introgression along the evolutionary history of a unique, non-model insect system: dragonflies and damselflies (Odonata). We demonstrate that introgression is a pervasive evolutionary force across various taxonomic levels within Odonata. In particular, we show that the morphologically "intermediate" species of Anisozygoptera (one of the three primary suborders within Odonata besides Zygoptera and Anisoptera), which retain phenotypic characteristics of the other two suborders, experienced high levels of introgression likely coming from zygopteran genomes. Additionally, we find evidence for multiple cases of deep inter-superfamilial ancestral introgression

Svensson, E.I., Waller, J.T., 2013. Ecology and sexual selection: evolution of wing pigmentation in calopterygid damselflies in relation to latitude, sexual dimorphism, and speciation. Am. Nat. 182, E174-E195.
Abstract: Our knowledge about how the environment influences sexual selection regimes and how ecology and sexual selection interact is still limited. We performed an integrative study of wing pigmentation in calopterygid damselflies, combining phylogenetic comparative analyses, field observations and experiments. We investigated the evolutionary consequences of wing pigmentation for sexual dimorphism, speciation, and extinction and addressed the possible thermoregulatory benefits of pigmentation. First, we reconstructed ancestral states of male and female phenotypes and traced the evolutionary change of wing pigmentation. Clear wings are the ancestral state and that pigmentation dimorphism is derived, suggesting that sexual selection results in sexual dimorphism. We further demonstrate that pigmentation elevates speciation and extinction rates. We also document a significant biogeographic association with pigmented species primarily occupying northern temperate regions with cooler climates. Field observations and experiments on two temperate sympatric species suggest a link between pigmentation, thermoregulation, and sexual selection, although body temperature is also affected by other phenotypic traits such as body mass, microhabitat selection, and thermoregulatory behaviors. Taken together, our results suggest an important role for wing pigmentation in sexual selection in males and in speciation. Wing pigmentation might not increase ecological adaptation and species longevity, and its primary function is in sexual signaling and species recognition

Swaegers, J., Janssens, S.B., Ferreira, S., Watts, P.C., Mergeay, J., McPeek, M.A., Stoks, R., 2014. Ecological and evolutionary drivers of range size in Coenagrion damselflies. J. Evol. Biol. 27, 2386-2395.
Abstract: Geographic range size is a key ecological and evolutionary characteristic of a species, yet the causal basis of variation in range size among species remains largely unresolved. One major reason for this is that several ecological and evolutionary traits may jointly shape species' differences in range size. We here present an integrated study of the contribution of ecological (dispersal capacity, body size and latitudinal position) and macroevolutionary (species' age) traits in shaping variation in species' range size in Coenagrion damselflies. We reconstructed the phylogenetic tree of this genus to account for evolutionary history when assessing the contribution of the ecological traits and to evaluate the role of the macroevolutionary trait (species' age). The genus invaded the Nearctic twice independently from the Palearctic, yet this was not associated with the evolution of larger range sizes or dispersal capacity. Body size and species' age did not explain variation in range size. There is higher flight ability (as measured by wing aspect ratio) at higher latitudes. Species with a larger wing aspect ratio had a larger range size, also after correcting for phylogeny, suggesting a role for dispersal capacity in shaping the species' ranges. More northern species had a larger species' range, consistent with Rapoport's rule, possibly related to niche width. Our results underscore the importance of integrating macroecology and macroevolution when explaining range size variation among species

Swaegers, J., Spanier, K.I., Stoks, R., 2020. Genetic compensation rather than genetic assimilation drives the evolution of plasticity in response to mild warming across latitudes in a damselfly. Mol. Ecol. 29, 4823-4834.
Abstract: Global warming is causing plastic and evolutionary changes in the phenotypes of ectotherms. Yet, we have limited knowledge on how the interplay between plasticity and evolution shapes thermal responses and underlying gene expression patterns. We assessed thermal reaction norm patterns across the transcriptome and identified associated molecular pathways in northern and southern populations of the damselfly Ischnura elegans. Larvae were reared in a common garden experiment at the mean summer water temperatures experienced at the northern (20 degrees C) and southern (24 degrees C) latitudes. This allowed a space-for-time substitution where the current gene expression levels at 24 degrees C in southern larvae are a proxy for the expected responses of northern larvae under gradual thermal evolution to the predicted 4 degrees C warming. Most differentially expressed genes showed fixed differences across temperatures between latitudes, suggesting that thermal genetic adaptation will mainly evolve through changes in constitutive gene expression. Northern populations also frequently showed plastic responses in gene expression to mild warming, while southern populations were much less responsive to temperature. Thermal responsive genes in northern populations showed to a large extent a pattern of genetic compensation, namely gene expression that was induced at 24 degrees C in northern populations remained at a lower constant level in southern populations, and were associated with metabolic and translation pathways. There was instead little evidence for genetic assimilation of an initial plastic response to mild warming. Our data therefore suggest that genetic compensation rather than genetic assimilation may drive the evolution of plasticity in response to mild warming in this damselfly species

Swaegers, J., Sanchez-Guillen, R.A., Carbonell, J.A., Stoks, R., 2021. Convergence of life history and physiology during range expansion toward the phenotype of the native sister species. Sci. Total Environ. 151530.
Abstract: In our globally changing planet many species show range expansions whereby they encounter new thermal regimes that deviate from those of their source region. Pressing questions are to what extent and through which mechanisms, plasticity and/or evolution, species respond to the new thermal regimes and whether these trait changes are adaptive. Using a common-garden experiment, we tested for plastic and evolutionary trait changes in life history and a set of understudied biochemical/physiological traits during the range expansion of the damselfly Ischnura elegans from France into a warmer region in Spain. To assess the adaptiveness of the trait changes we used the phenotype of its native sister species in Spain, I. graellsii, as proxy for the locally adapted phenotype. While our design cannot fully exclude maternal effects, our results suggest that edge populations adapted to the local conditions in the newly invaded region through the evolution of a faster pace-of-life (faster development and growth rates), a smaller body size, a higher energy budget and increased expression levels of the heat shock gene DnaJ. Notably, based on convergence toward the phenotype of the native sister species and its thermal responses, and the fit with predictions of life history theory these potential evolutionary changes were likely adaptive. Nevertheless, the convergence toward the native sister species is incomplete for thermal plasticity in traits associated with anaerobic metabolism and melanization. Our results highlight that evolution might at least partly contribute in an adaptive way to the persistence of populations during range expansion into new thermal environments and should be incorporated when predicting and understanding species' range expansions

Swaegers, J., De, C. S., Gaens, N., Lancaster, L. T., Carbonell, J. A., Sanchez Guillen, R. A., & Stoks, R. (2024). Plasticity and associated epigenetic mechanisms play a role in thermal evolution during range expansion. Evol. Lett. 8, 76-88, doi:qrac007 [pii];10.1093/evlett/qrac007 [doi].
Abstract: Due to global change, many species are shifting their distribution and are thereby confronted with novel thermal conditions at the moving range edges. Especially during the initial phases of exposure to a new environment, it has been hypothesized that plasticity and associated epigenetic mechanisms enable species to cope with environmental change. We tested this idea by capitalizing on the well-documented southward range expansion of the damselfly Ischnura elegans from France into Spain where the species invaded warmer regions in the 1950s in eastern Spain (old edge region) and in the 2010s in central Spain (new edge region). Using a common garden experiment at rearing temperatures matching the ancestral and invaded thermal regimes, we tested for evolutionary changes in (thermal plasticity in) larval life history and heat tolerance in these expansion zones. Through the use of de- and hypermethylating agents, we tested whether epigenetic mechanisms play a role in enabling heat tolerance during expansion. We used the phenotype of the native sister species in Spain, I. graellsii, as proxy for the locally adapted phenotype. New edge populations converged toward the phenotype of the native species through plastic thermal responses in life history and heat tolerance while old edge populations (partly) constitutively evolved a faster life history and higher heat tolerance than the core populations, thereby matching the native species. Only the heat tolerance of new edge populations increased significantly when exposed to the hypermethylating agent. This suggests that the DNA methylation machinery is more amenable to perturbation at the new edge and shows it is able to play a role in achieving a higher heat tolerance. Our results show that both (evolved) plasticity as well as associated epigenetic mechanisms are initially important when facing new thermal regimes but that their importance diminishes with time

Takahashi, M., Okude, G., Futahashi, R., Takahashi, Y., Kawata, M., 2021. The effect of the doublesex gene in body colour masculinization of the damselfly Ischnura senegalensis. Biol. Lett. 17, 20200761.
Abstract: Odonata species display a remarkable diversity of colour patterns, including intrasexual polymorphisms. In the damselfly (Ischnura senegalensis), the expression of a sex-determining transcription factor, the doublesex (Isdsx) gene is reportedly associated with female colour polymorphism (CP) (gynomorph for female-specific colour and andromorph for male-mimicking colour). Here, the function of Isdsx in thoracic coloration was investigated by electroporation-mediated RNA interference (RNAi). RNAi of the Isdsx common region in males and andromorphic females reduced melanization and thus changed the colour pattern into that of gynomorphic females, while the gynomorphic colour pattern was not affected. By contrast, RNAi against the Isdsx long isoform produced no changes, suggesting that the Isdsx short isoform is important for body colour masculinization in both males and andromorphic females. When examining the expression levels of five genes with differences between sexes and female morphs, two melanin-suppressing genes, black and ebony, were expressed at higher levels in the Isdsx RNAi body area than a control area. Therefore, the Isdsx short isoform may induce thoracic colour differentiation by suppressing black and ebony, thereby generating female CP in I. senegalensis. These findings contribute to the understanding of the molecular and evolutionary mechanisms underlying female CP in Odonata

Takahashi, Y., Noriyuki, S., 2019. Colour polymorphism influences species' range and extinction risk. Biol. Lett. 15, 20190228.
Abstract: Polymorphisms in a population are expected to increase the growth rate and the stability of the population, leading to the expansion of geographical distribution and mitigation of extinction risk of a species. However, the generality of such ecological consequences of colour polymorphism remains uncertain. Here, via a comparative approach, we assessed whether colour polymorphisms influence climatic niche breadth and extinction risk in some groups of damselflies, butterflies and vertebrates. The climatic niche breadth was greater, and extinction risk was lower in polymorphic species than in monomorphic species in all taxa analysed. The results suggest that colour polymorphism facilitates range expansion and species persistence

Takahashi, Y., Suyama, Y., Matsuki, Y., Funayama, R., Nakayama, K., Kawata, M., 2016. Lack of genetic variation prevents adaptation at the geographic range margin in a damselfly. Mol. Ecol. 25, 4450-4460.
Abstract: What limits a species' distribution in the absence of physical barriers? Genetic load due to asymmetric gene flow and the absence of genetic variation due to lack of gene flow are hypothesized to constrain adaptation to novel environments in marginal populations, preventing range expansion. Here, we examined the genetic structure and geographic variation in morphological traits in two damselflies (Ischnura asiatica and I. senegalensis) along a latitudinal gradient in Japan, which is the distribution centre of I. asiatica and the northern limit of I. senegalensis. Genomewide genetic analyses found a loss of genetic diversity at the edge of distribution in I. senegalensis but consistently high diversity in I. asiatica. Gene flow was asymmetric in a south-north direction in both species. Although body size and wing loading showed decreasing latitudinal clines (smaller in north) in I. asiatica in Japan, increasing latitudinal clines (larger in north) in these phenotypic markers were observed in I. senegalensis, particularly near the northern boundary, which coincided well with the location where genetic diversity began a sharp decline. In ectothermic animals, increasing latitudinal cline in these traits was suggested to be established when they failed to adapt to thermal gradient. Therefore, our findings support the possibility that a lack of genetic variation rather than geneflow swamping is responsible for the constraint of adaptation at the margin of geographic distribution

Takahashi,M., Y.Takahashi, and M.Kawata. 2018. Candidate genes associated with color morphs of female-limited polymorphisms of the damselfly Ischnura senegalensis. In press, Heredity.(Edinb.).
Abstract: Many Odonata species exhibit female-limited polymorphisms, where one morph is similar to the conspecific male in body color and other traits (andromorph), whereas one or more other morphs differ from the male (gynomorphs). Here we investigated the differentially expressed transcripts (DETs) among males and two female morph groups (gynomorphs and andromorphs) using RNA-seq to identify candidate transcripts encoding female-limited polymorphisms in the damselfly Ischnura senegalensis. Seven DETs that had significantly different expression levels between males and gynomorphs, but not between males and andromorphs, were identified. The expression levels of four of these candidate genes, doublesex (dsx), black, ebony, and chaoptin (chp), were selected for further analysis using qRT-PCR. Sequence analysis of the dsx amplicons revealed that this gene produced at least three transcripts. Two short transcripts were mainly expressed in males and andromorphs, whereas the long transcript was specifically expressed in both morph female groups; that is, the expression pattern of the dsx splice variants in andromorphs was an intermediate between that of males and gynomorphs. Because the dsx gene functions as a transcription factor that regulates the sex-specific expression of multiple genes, its splice variants in I. senegalensis may explain why the andromorph is female but exhibits some masculinized traits. Because we did not detect different coding sequences of the candidate genes among the different morphs, a diallelic genomic region controlling alternative splicing of dsx, thus determining female-limited polymorphism in I. senegalensis most likely lies in a non-coding region of the dsx gene or in a gene upstream of it

Takamura, K., 1996. Life cycle of the damselfly Calopteryx atrata in relation to pesticide contamination. Ecotoxicology. 5, 1-8.
Abstract: The life cycle of the damselfly Calopteryx atrata was investigated in relation to pesticide contamination occurring in its aquatic habitat. Calopteryx atrata emerged from the River Onogawa around May and stayed as immature adults in forests away from the stream. From late June to mid-August, mature adults were engaged in reproduction at the stream. On the other hand, pesticide contamination occurred from April to August with its peak in May and June, following transplantation of young rice plants. Mature nymphs of C. atrata experienced pesticide contamination, but may have tolerated it. Hatched nymphs had high susceptibility to two of the commonly used insecticides, fenitrothion (mortality occurred at >4.0 mug l(-1) in 24 h and at >2.0 mug l(-1) in 48 h) and fenthion (>2.0 mug l(-1) in 24 h and >1.0 mug l(-1) in 48 h). Hatching was estimated to occur mainly in August, when pesticide contamination was not as high as the susceptibility level. However, the level of pesticide contamination in August is variable due to its origin from aerial spraying, so hatched nymphs may experience a hazardous amount of pesticides depending on the year or place. The population of C. atrata does not escape the risk of pesticide contamination completely and may be affected by it

Tennessen, K.J., 2016. Psaironeura angeloi, a new species of damselfly (Zygoptera: Coenagrionidae) from Central and South America. Zootaxa. 4078, 28-37.
Abstract: Psaironeura angeloi sp. nov. (Holotype male deposited in FSCA: ECUADOR, Esmeraldas Province, small stream 5.6 km NW of Lita, 00.893 degrees N 78.510 degrees W, 4.II.1997, KJT leg.) is described and illustrated based on specimens from Ecuador, Panama, Costa Rica, and Nicaragua, bringing the total number of species in the genus to five. The new species is closely related to P. remissa (Calvert), a Mexican/northern Central American species with broad, foliate male cerci, but is distinct in that the long flagella of the genital ligula lack a small sharp spine unique to P. remissa, labrum and clypeus are orange-red, and the back of the head is mostly pale in both males and females. In life, the eyes of the new species are bright red in males versus green and black in P. remissa

Theischinger, G., Marinov, M., Bybee, S., Jensen, C., Theuerkauf, J., Rashni, B., 2020. The genus Gynacantha Rambur, 1842 in the South Pacific (Odonata: Anisoptera: Aeshnidae). Zootaxa. 4778, zootaxa.

Abstract: Available information on Gynacantha Rambur, 1842 species from the South Pacific is reviewed. Specimens were found to be sufficiently similar to G. rosenbergi Kaup in Brauer, 1867 to be placed in the same species group (G. rosenbergi group-established here) but also distinct enough to form a subgroup of its own (G. rosenbergi Pacific group). All species of the G. rosenbergi group are diagnosed, with three species, Gynacantha vitiana sp. n. (male and female) from Viti Levu, Fiji, G. koroana sp. n. (male) from Koro, Fiji and G. vanuatua sp. n. (male) from Malekula, Vanuatu being described as new to science. A key is presented for identification of the males.

 

Theys, C., Verheyen, J., Janssens, L., Tuzun, N., & Stoks, R. (2023). Effects of heat and pesticide stress on life history, physiology and the gut microbiome of two congeneric damselflies that differ in stressor tolerance. Sci. Total Environ. 875, 162617, doi:S0048-9697(23)01233-0 [pii];10.1016/j.scitotenv.2023.162617 [doi].
Abstract: The combined impact of toxicants and warming on organisms is getting increased attention in ecotoxicology, but is still hard to predict, especially with regard to heat waves. Recent studies suggested that the gut microbiome may provide mechanistic insights into the single and combined stressor effects on their host. We therefore investigated effects of sequential exposure to a heat spike and a pesticide on both the phenotype (life history and physiology) and the gut microbiome composition of damselfly larvae. We compared the fast-paced Ischnura pumilio, which is more tolerant to both stressors, with the slow-paced I. elegans, to obtain mechanistic insights into species-specific stressor effects. The two species differed in gut microbiome composition, potentially contributing to their pace-of-life differences. Intriguingly, there was a general resemblance between the stressor response patterns in the phenotype and in the gut microbiome, whereby both species responded broadly similar to the single and combined stressors. The heat spike negatively affected the life history of both species (increased mortality, reduced growth rate), which could be explained not only by shared negative effects on physiology (inhibition of acetylcholinesterase, increase of malondialdehyde), but also by shared effects on gut bacterial species' abundances. The pesticide only had negative effects (reduced growth rate, reduced net energy budget) in I. elegans. The pesticide generated shifts in the bacterial community composition (e.g. increased abundance of Sphaerotilus and Enterobacteriaceae in the gut microbiome of I. pumilio), which potentially contributed to the relatively higher pesticide tolerance of I. pumilio. Moreover, in line with the response patterns in the host phenotype, the effects of the heat spike and the pesticide on the gut microbiome were mainly additive. By contrasting two species differing in stress tolerance, our results suggest that response patterns in the gut microbiome may improve our mechanistic understanding of single and combined stressor effects

 

Theys, C., Verheyen, J., Delnat, V., Janssens, L., Tuzun, N., & Stoks, R. (2023). Thermal and latitudinal patterns in pace-of-life traits are partly mediated by the gut microbiome. Sci. Total Environ. 855, 158829, doi:S0048-9697(22)05928-9 [pii];10.1016/j.scitotenv.2022.158829 [doi].
Abstract: The integration of life-history, physiological and behavioural traits into the pace-of-life generates a powerful framework to understand trait variation in nature both along environmental gradients and in response to environmental stressors. While the gut microbiome has been hypothesized as a candidate mechanism to underlie differentiation in the pace-of-life, this has been rarely studied. We investigated the role of the gut microbiome in contributing to the differentiation in pace-of-life and in thermal adaptation between populations of Ischnura elegans damselfly larvae inhabiting warmer low latitudes and colder high latitudes. We carried out a common-garden experiment, whereby we manipulated the exposure of the damselfly larvae to two key global warming factors: 4 degrees C warming and a 30 degrees C heat wave. Comparing the bacterial composition of the food source and the bacterioplankton indicated that damselfly larvae differentially take up bacteria from the surrounding environment and have a resident and functionally relevant microbiome. The gut microbiome differed between larvae of both latitudes, and this was associated with the host's latitudinal differentiation in activity, a key pace-of-life trait. Under heat wave exposure, the gut microbial community composition of high-latitude larvae converged towards that of the low-latitude larvae, with an increase in bacteria that likely are important in providing energy to cope with the heat wave. This suggests an adaptive latitude-specific shift in the gut microbiota matching the better ability of low-latitude hosts to deal with heat extremes. In general, our study provides evidence for the gut microbiome contributing to latitudinal differentiation in both the pace-of-life and in heat adaptation in natural populations

Tiitsaar, A., Kaasik, A., Teder, T., 2013. The effects of seasonally variable dragonfly predation on butterfly assemblages. Ecology. 94, 200-207.

Abstract: Where predation is seasonally variable, the potential impact of a predator on individual prey species will critically depend on phenological synchrony of the predator with the prey. Here we explored the effects of seasonally variable predation in multispecies assemblages of short-lived prey. The study was conducted in a landscape in which we had previously demonstrated generally high, but spatially and seasonally variable dragonfly-induced mortality in adult butterflies. In this system, we show that patterns of patch occupancy in butterfly species flying during periods of peak dragonfly abundance are more strongly associated with spatial variation in dragonfly abundance than patch occupancy of species flying when dragonfly density was low. We provide evidence indicating that this differential sensitivity of different butterfly species to between-habitat differences in dragonfly abundance is causally tied to seasonal variation in the intensity of dragonfly predation. The effect of dragonfly predation could also be measured at the level of whole local butterfly assemblages. With dragonfly density increasing, butterfly species richness decreased, and butterfly species composition tended to show a shift toward a greater proportion of species flying during periods of off-peak dragonfly abundance

Torres-Cambas, Y., Ferreira, S., Cordero-Rivera, A., Lorenzo-Carballa, M.O., 2019. Mechanisms of allopatric speciation in an Antillean damselfly genus (Odonata, Zygoptera): Vicariance or long-distance dispersal? Mol. Phylogenet. Evol. 137, 14-21.
Abstract: We have examined divergence times of the Antillean damselfly genus Hypolestes, to elucidate which mechanism of allopatric speciation, vicariance or long-distance dispersal, could better explain the currently observed disjunct distributions of this genus. Samples of the three extant species of the genus, Hypolestes clara (Jamaica), H. hatuey (Hispaniola) and H. trinitatis (Cuba), were collected. Mitochondrial and nuclear DNA gene fragments were amplified to reconstruct phylogenetic relationships and estimate divergence times in this genus. Hypolestes comprises currently three species, which consist in four geographically and genetically isolated lineages located in Jamaica, Hispaniola, Eastern Cuba and Central Cuba. Results of our analyses suggest that the three species diverged between approximately 5.91 and 1.69mya, and that the separation between the lineages from Central Cuba and Eastern Cuba occurred between approximately 2.0 and 0.62mya. Disjunct distributions in the genus Hypolestes can be better explained by a long-distance dispersal mechanism, since the divergence times of the three species do not coincide with the timeline formation of the geographic barriers between Cuba, Hispaniola and Jamaica. The Cuban lineages of H. trinitatis constitute different molecular operational taxonomic units (MOTU). The elevation of these MOTU to the species category requires the analysis of additional characters

Torres-Pachon, M., Novelo-Gutierrez, R., Ruiz-Sanchez, E., 2019. A synopsis of Phyllogomphoides Belle, 1970 (Odonata: Gomphidae) of Mexico: taxonomy and distribution. Zootaxa. 4634, zootaxa.
Abstract: A synopsis of the 13 species of Phyllogomphoides Belle, 1970 known to occur within Mexico is presented. Taxonomic keys for males are based primarily on morphology of anterior and posterior hamules, caudal appendages and of the vulvar lamina in females and includes full descriptions for each species accompanied by high-resolution photographs, drawings, comparative diagnostic notes, natural history and distribution maps. Females of P. danieli Gonzalez Novelo, 1990 and P. nayaritensis Belle, 1987 are described for the first time. Moreover, new records for P. albrighti (Needham, 1950) for the states of Guerrero; P. danieli Gonzalez Novelo, 1990 for Colima, Guerrero and San Luis Potosi; P. duodentatus Donnelly, 1979 for Oaxaca; P. luisi Gonzalez Novelo, 1990 for Nayarit, and P. pugnifer Donnelly, 1979 for San Luis Potosi, are also provided

Toussaint, E.F.A., Bybee, S.M., Erickson, R.J., Condamine, F.L., 2019. Forest giants on different evolutionary branches: Ecomorphological convergence in helicopter damselflies. Evolution. 73, 1045-1054.
Abstract: The convergent evolution of analogous features is an evolutionary process occurring independently across the tree of life. From the evolution of echolocation, prehensile tail, viviparity, or winged flight, environmental factors often drive this astonishing phenomenon. However, convergent evolution is not always conspicuous or easily identified. Giant damselflies count among the largest flying insects on Earth, and have astonishing ecologies including orb-web spider plucking and oviposition in phytotelmata. One species occurs in the Afrotropics and 18 species are found in the Neotropics. Convergent evolution was historically hypothesized based on the ecological and morphological affinities of these two geographically distant lineages but was not supported by earlier phylogenetic inferences supporting their monophyly. Using a molecular supermatrix approach and a large selection of outgroups, we revisit and reject the monophyly of Afrotropical and Neotropical giant damselflies that is otherwise supported by a morphological phylogeny. Molecular divergence time estimation suggests an origin of Afrotropical giant damselflies in the late Paleogene, and of Neotropical ones at the Cretaceous/Paleogene boundary, thereby rejecting a long-standing West Gondwana vicariance hypothesis. The strong ecological and morphological resemblances between these two independent lineages represents an astonishing case of Amphi-Atlantic tropical convergent evolution

Troast, D., Suhling, F., Jinguji, H., Sahlen, G., Ware, J., 2016. A Global Population Genetic Study of Pantala flavescens. PLoS. One. 11, e0148949.
Abstract: Among terrestrial arthropods, the dragonfly species Pantala flavescens is remarkable due to their nearly global distribution and extensive migratory ranges; the largest of any known insect. Capable of migrating across oceans, the potential for high rates of gene flow among geographically distant populations is significant. It has been hypothesized that P. flavescens may be a global panmictic population but no sufficient genetic evidence has been collected thus far. Through a population genetic analysis of P. flavescens samples from North America, South America, and Asia, the current study aimed to examine the extent at which gene flow is occurring on a global scale and discusses the implications of the genetic patterns we uncovered on population structure and genetic diversity of the species. This was accomplished using PCR-amplified cytochrome oxidase one (CO1) mitochondrial DNA data to reconstruct phylogenetic trees, a haplotype network, and perform molecular variance analyses. Our results suggested high rates of gene flow are occurring among all included geographic regions; providing the first significant evidence that Pantala flavescens should be considered a global panmictic population.

Tsuchiya, K., Hayashi, F., 2014. Left-handed sperm removal by male Calopteryx damselflies (Odonata). Springerplus. 3, 144.
Abstract: Male genitalia in several insect species are asymmetry in right and left shape. However, the function of such asymmetric male genitalia is still unclear. We found that the male genitalia of the damselfly Calopteryx cornelia (Odonata: Calopterygidae) are morphologically symmetric just after emergence but asymmetric after reproductive maturation. Males remove rival sperm stored in the female bursa copulatrix (single spherical sac) and the following spermatheca (Y-shaped tubular sac) prior to their own ejaculation to prevent sperm competition. Males possess the aedeagus with a recurved head to remove bursal sperm and a pair of spiny lateral processes to remove spermathecal sperm. The right lateral process is less developed than the left, and sperm stored in the right spermathecal tube are rarely removed. Experiments involving surgical cutting of each lateral process demonstrated that only the left process functions in spermathecal sperm removal. Thus, males of C. cornelia are left-handed in their sperm removal behaviour at copulation

Tsubaki, Y., Kato, C., Shintani, S., 2006. On the respiratory mechanism during underwater oviposition in a damselfly Calopteryx cornelia Selys. J. Insect Physiol 52, 499-505.
Abstract: Calopteryx cornelia females oviposit almost exclusively underwater in forest streams. Field observation showed that the duration of uninterrupted submerged oviposition ranged between 20 and 120 min and the number of eggs laid was linearly related to the time spent underwater. By holding a damselfly under water in a small jar, we measured the maximum 'submergence potential', which was defined as the time elapsed between placing the insect underwater and asphyxiation. A series of experiments showed that there was no gender difference in the submergence potential. This was about 120 min if a damselfly was allowed to change its position while under water. The submergence potential was shorter if the damselflies were kept motionless, if air bubbles trapped on the wing surfaces were removed by coating with Vaseline or if the water was hypoxic. By contrast, submergence potential was longer if a part of the wings were kept above the water surface, or if the water was agitated using a magnetic stirrer. These results suggest that ovipositing C. cornelia females depend for oxygen on the physical-gill action of the thin air layer trapped on the body and wing surfaces. Respiration capacity under water is not likely to be a limiting factor for ovipositing females during the production of a single clutch

Turnhout, S. & Halffman, W. (2024). Readjusting observational grids in dragonfly field guides. Soc. Stud. Sci. 54, 105-132, doi:10.1177_03063127231183011 [pii];10.1177/03063127231183011 [doi].
Abstract: Wildlife field guide books present salient features of species, from colour and form to behaviour, and give their readers a vocabulary to express what these features look like. Such structures for observation, or observational grids, allow users to identify wildlife species through what Law and Lynch have called 'the difference that makes the difference'. In this article, we show how these grids, and the characteristics that distinguish species, change over time in response to wider concerns in the community that use and make the field guides. We use the development of Dutch field guides for dragonflies to show how the ethics of observing wildlife, the recreational value of dragonfly observation, the affordances of observational tools, and biodiversity monitoring and conservation goals all have repercussions for how dragonflies are to be identified. Ultimately, this affects not only how dragonflies are to be observed and identified, but also what is taken to be 'out there'. The article is based on a transdisciplinary cooperation between a dragonfly enthusiast with emic knowledge and access, and an STS researcher. We hope the articulation of our approach might inspire analyses of other observational practices and communities

Tuzun N, Op de BL, Stoks R. 2017. Sexual selection reinforces a higher flight endurance in urban damselflies. Evol Appl 10:694-703.
Abstract: Urbanization is among the most important and globally rapidly increasing anthropogenic processes and is known to drive rapid evolution. Habitats in urbanized areas typically consist of small, fragmented and isolated patches, which are expected to select for a better locomotor performance, along with its underlying morphological traits. This, in turn, is expected to cause differentiation in selection regimes, as populations with different frequency distributions for a given trait will span different parts of the species' fitness function. Yet, very few studies considered differentiation in phenotypic traits associated with patterns in habitat fragmentation and isolation along urbanization gradients, and none considered differentiation in sexual selection regimes. We investigated differentiation in flight performance and flight-related traits and sexual selection on these traits across replicated urban and rural populations of the scrambling damselfly Coenagrion puella. To disentangle direct and indirect paths going from phenotypic traits over performance to mating success, we applied a path analysis approach. We report for the first time direct evidence for the expected better locomotor performance in urban compared to rural populations. This matches a scenario of spatial sorting, whereby only the individuals with the best locomotor abilities colonize the isolated urban populations. The covariation patterns and causal relationships among the phenotypic traits, performance and mating success strongly depended on the urbanization level. Notably, we detected sexual selection for a higher flight endurance only in urban populations, indicating that the higher flight performance of urban males was reinforced by sexual selection. Taken together, our results provide a unique proof of the interplay between sexual selection and adaptation to human-altered environments.

Tuzun, N., Stoks, R., 2021. Lower bioenergetic costs but similar immune responsiveness under a heat wave in urban compared to rural damselflies. Evol. Appl. 14, 24-35.
Abstract: There is mounting evidence that the widespread phenotypic changes in response to urbanization may reflect adaptations caused by rapid evolutionary processes driven by urban-related stressors. Compared to increased habitat fragmentation and pollution, adaptations towards another typical urban-related stressor, that is higher and longer lasting very high temperatures (heat waves), are much less studied. Notably, the sensitivities to heat waves of life-history traits and important fitness-related physiological traits such as immune responsiveness and bioenergetic variables (energy availability, energy consumption and their balance) have never been contrasted between urban and rural populations. By conducting a laboratory common-garden experiment, we compared effects of a simulated heat wave on life history (survival and growth rate), immune responsiveness and bioenergetic variables between three urban and three rural populations of the damselfly Coenagrion puella. Because energy-mediated trade-off patterns may only be detected under energetically costly manipulations, all larvae were immune-challenged by simulating ectoparasitism by water mites. As expected, the simulated heat wave caused negative effects on nearly all response variables. The immune responsiveness, on the other hand, increased under the heat wave, consistent with a trade-off pattern between immune function and growth, and this similarly between urban and rural populations. A key finding was that urban larvae suffered less from the simulated heat wave compared to the rural larvae in terms of a lower heat wave-induced depletion in energy availability. This suggests an adaptation of urban populations to better cope with the stronger and more frequent heat waves in cities. Notably, this urbanization-driven evolution in the bioenergetic variables was not apparent in the absence of a heat wave. Given that changes in energy budgets have strong fitness consequences, our findings suggest that the evolved higher ability to cope with heat waves is fundamental for the survival of urban damselfly populations

Tuzun, N., Op de, B.L., Oliarinony, R., Van, D.M., Stoks, R., 2018. Warming under seminatural outdoor conditions in the larval stage negatively affects insect flight performance. Biol. Lett. 14.
Abstract: Laboratory studies indicate global warming may cause changes in locomotor performance directly relevant for fitness and dispersal. Yet, this remains to be tested under seminatural settings, and the connection with warming-induced alterations in the underlying traits has been rarely studied. In an outdoor mesocosm experiment with the damselfly Ischnura elegans, 4 degrees C warming in the larval stage decreased the flight muscle mass, which correlated with a lower flight endurance. Warming did not affect body mass, size or wing morphology. This illustrates how carry-over effects of warming under seminatural conditions during early development bridge metamorphosis and negatively impact locomotor performance through changes in a key flight-related trait.

Ubhi R, Matthews PGD. 2017. The transition from water to air in aeshnid dragonflies is associated with a change in ventilatory responses to hypoxia and hypercapnia. J Insect Physiol., in press.
Abstract: Dragonflies are amphibiotic, spending most of their lives as aquatic nymphs before metamorphosing into terrestrial, winged imagoes. Both the nymph and the adult use rhythmic abdominal pumping movements to ventilate their gas exchange systems: the nymph tidally ventilates its rectal gill with water, while the imago pumps air into its tracheal system through its abdominal spiracles. The transition from water to air is known to be associated with changes in both respiratory chemosensitivity and ventilatory control in vertebrates and crustaceans, but the changes experienced by amphibiotic insects have been poorly explored. In this study, dragonfly nymphs (Anax junius) and imagoes (Anax junius and Aeshna multicolor) were exposed to hypoxia and hypercapnia while their abdominal ventilation frequency and amplitude was recorded. Water-breathing nymphs showed a significant increase in abdominal pumping frequency when breathing hypoxic water (<10kPa O2), but no strong response to CO2, even in severe hypercapnia (up to 10kPa CO2). In contrast, both species of air-breathing imago increased their abdominal pumping amplitude when exposed to either hypoxia or hypercapnia, but did not show any significant increase in frequency. These results demonstrate that aquatic dragonfly nymphs possess a respiratory sensitivity that is more like other water breathing animals, being sensitive to hypoxia but not hypercapnia, while their air-breathing adult form responds to both respiratory challenges, like other terrestrial insects. Shifting from ventilating a rectal gill with water to ventilating a tracheal system with air is also associated with a change in how abdominal ventilation is controlled; nymphs regulate gas exchange by varying frequency while imagoes respond by varying amplitude

Uiterwaal SF, Mares C, DeLong JP. 2017. Body size, body size ratio, and prey type influence the functional response of damselfly nymphs. Oecologia 185:339-346.
Abstract: Predator-prey interactions play a crucial role in structuring food webs, and the functional response is one way to measure the strength of this interaction. Here, we examine how predator and prey body size affects the functional response of a generalist predator-damselfly nymphs-feeding on three prey types: copepods, Daphnia, and Chydorus. Our results suggest that consumption of copepods is independent of predator body size, while increased predator body size is associated with an increased space clearance rate for Daphnia and a reduced space clearance rate for Chydorus. When considered together, foraging rates on Daphnia and Chydorus (both cladocerans) are consistent with a hump-shaped functional response, with peak foraging rates occurring at an intermediate predator-prey size ratio. Thus, although most food web theory assumes allometric predator-prey links or peaked functional responses at intermediate predator-prey size ratios, our results suggest that both relationships may occur in food webs, in addition to size-independent functional responses

Van, G.H., Stoks, R., Matthysen, E., Valck, F., De, B.L., 1999. Male choice for female colour morphs in Ischnura elegans (Odonata, Coenagrionidae): testing the hypotheses. Anim Behav. 57, 1229-1232.
Abstract: The occurrence of different conspecific female colour morphs, with one of the morphs resembling the male, is supposed to have consequences for mate choice. There are two hypotheses linking mate choice and female colour polymorphism. First, males may mate predominantly with female morphs that differ from the male because they do not recognize androchrome females as females (male mimic hypothesis). Second, males may be more attracted to the most common morph in the population (habituation hypothesis). We tested these hypotheses in five populations of the same species, Ischnura elegans, with a range of androchrome frequencies. In each population we performed binary choice experiments in small cages. Males did not consistently prefer gynochrome females but mated predominantly with the most common morph in the population. Moreover, a reanalysis of the available damselfly data in the literature also supported the habituation hypothesis. Copyright 1999 The Association for the Study of Animal Behaviour

Van, G.H., De, B.L., Stoks, R., 2005. Reversible switches between male-male and male-female mating behaviour by male damselflies. Biol. Lett. 1, 268-270.
Abstract: For many animal groups, both sexes have been reported to attempt to mate with members of their own sex. Such behaviour challenges theories of sexual selection, which predict optimization of reproductive success. We tested male mate choice between opposite- and same-sex members in the damselfly Ischnura elegans. Binary choice experiments were conducted following exposure periods in insectaries with only males or with both sexes present. We show that switches in choice between the opposite sex and the same sex can be induced and reversed again by changing the social context. We argue that the observed reversibility in male-male- and male-female-directed mating behaviour is maladaptive and a consequence of strong selection on a male's ability to alter choice between different female colour morphs

Van, P.N., De, B.L., De, J.M., Vanhaecke, L., Stoks, R., Bervoets, L., 2014. Can damselfly larvae (Ischnura elegans) be used as bioindicators of sublethal effects of environmental contamination? Aquat. Toxicol. 154 , 270-277.
Abstract: The present study measured various pesticides and trace metals, together with sublethal effect biomarkers (lipid, protein and glycogen levels, acetylcholinesterase (AChE) and glutathione-S-transferase (GST) activities) in damselfly larvae (Ischnura elegans) at sixteen sampling sites in Flanders (Belgium). Four pesticides (chloridazon, dichlorvos, terbutylazine, metolachlor), some of them hardly measurable in surface water, and all trace metals were above the limit of quantification in damselfly tissue. A principal component analysis (PCA) on the accumulated pollutant concentrations returned five pollutant axes explaining 85.8% of the total variation. Based on these PCA-axes a hierarchical cluster analysis revealed that the 16 sampled ponds could be classified in 7 groups. Increasing dichlorvos levels in the animals resulted in a lower body mass. Body mass was negatively correlated with GST and AChE activities, lipid and glycogen levels. The present findings provide evidence of toxicity-induced sublethal stress of dichlorvos accumulation in natural populations of I. elegans

Van DM, Stoks R, Janssens L. 2017. Beneficial effects of a heat wave: higher growth and immune components driven by a higher food intake. J Exp Biol 220:3908-3915.
Abstract: While heat waves will become more frequent and intense under global warming, the ability of species to deal with extreme weather events is poorly understood. We investigated how a heat wave influenced growth rate and investment in two immune components (phenoloxidase activity and melanin content) in larvae of two damselfly species, Ischnura elegans and Enallagma cyathigerum Late instar larvae were kept at 18 degrees C (i.e. their average natural water temperature) or under a simulated long heat wave at 30 degrees C. To explain the heat wave effects, we quantified traits related to energy uptake (food intake and growth efficiency), energy expenditure (metabolic rate measured as activity of the electron transport system, ETS) and investment in energy storage (fat content). The two species differed in life strategy, with I. elegans having a higher growth rate, growth efficiency, ETS activity and fat content. In line with its preference for cooler water bodies, the heat wave was only lethal for E. cyathigerum However, both species benefited from the heat wave by increasing growth rate, which can be explained by the higher increase in food intake than metabolic rate. This may also have contributed to the increased investment in energy storage and immune components under the heat wave. This mediatory role of food intake indicates the critical role of food availability and behaviour in shaping the impact of heat waves. Our results highlight the importance of including behavioural and physiological variables to unravel and predict the impact of extreme climate events on organisms

Van, D.M., Janssens, L., Stoks, R., 2019. Additive bioenergetic responses to a pesticide and predation risk in an aquatic insect. Aquat. Toxicol. 212, 205-213.
Abstract: Ignoring natural stressors such as predation risk may contribute to the failure of ecological risk assessment of pesticides to protect freshwater biodiversity. To better understand combined effects of multiple stressors, bioenergetic responses are important as these inform about the balance between energy input and consumption, and provide a unifying mechanism to integrate the impact of multiple stressors with different modes of action. We studied in Enallagma cyathigerum damselfly larvae the single and combined effects of exposure to the pesticide chlorpyrifos and predation risk on life history (survival and growth rate) and bioenergetic response variables at the organismal level (assimilation and conversion efficiency) and the cellular level (cellular energy allocation CEA, energy storage Ea, and energy consumption Ec). Chlorpyrifos exposure almost halved the survival of the damselfly larvae, while predation risk had no effect on survival. Both exposure to the pesticide and to predation risk reduced larval growth rates. This was caused by a reduced conversion efficiency under chlorpyrifos exposure, and by a reduced assimilation efficiency under predation risk. Both chlorpyrifos and predation risk reduced the CEA because of a decreased Ea, and for chlorpyrifos also an increased Ec. The lower Ea was driven by reductions in the fat and glycogen contents. Effects of the pesticide and predation risk were consistently additive and for most variables the strongest response was detected when both stressors were present. The absence of any synergisms may be explained by the high mortality and hypometabolism caused by the pesticide. Our results indicate that CEA can be a sensitive biomarker to evaluate effects of not only contaminants but also natural stressors, such as predation risk, and their combined impact on organisms

Vega-Sanchez, Y.M., Mendoza-Cuenca, L.F., Gonzalez-Rodriguez, A., 2019. Complex evolutionary history of the American Rubyspot damselfly, Hetaerina americana (Odonata): Evidence of cryptic speciation. Mol. Phylogenet. Evol. 139, 106536.
Abstract: Analyzing the magnitude and distribution of genetic variation within and among populations allows for hypothesis testing about historical demographic size changes, secondary contacts, refugia, and speciation patterns. Species distribution and genetic structure are greatly influenced by the complex life cycle and behavior of odonates. Hetaerina americana has been widely used as a model system in behavioral studies, but its population genetic structure has not been analyzed, except for a single study that included only three populations but identified the presence of markedly differentiated genetic groups, suggesting the existence of cryptic species. Here, we tested this hypothesis by assessing throughout the distribution range of H. americana the patterns of genetic and morphological variation in the male caudal appendages, due to the great importance of these structures in mate recognition. As molecular markers we used sequences of the mitochondrial cytochrome oxidase I (COI) gene and the nuclear internal transcribed spacer (ITS) region, as well as six nuclear microsatellites. We found very high population genetic differentiation (PhiST>0.51) in the three sets of markers but with strong mitonuclear discordance. A neutrality test suggested that the mitochondrial genome might be under purifying selection in association to climatic variables (temperature seasonality). The assignment of individuals to nuclear genetic groups showed little admixture and complete congruence with morphological differentiation in the male caudal appendages. Hence, the results suggest that H. americana represents at least two different cryptic species which are isolated reproductively

Vega-Sanchez, Y.M., Mendoza-Cuenca, L., Gonzalez-Rodriguez, A., 2022. Morphological variation and reproductive isolation in the Hetaerina americana species complex. Sci. Rep. 12, 10888.
Abstract: Incomplete premating barriers in closely related species may result in reproductive interference. This process has different fitness consequences and can lead to three scenarios: niche segregation, sexual exclusion, or reproductive character displacement. In morphologically cryptic species, isolation barriers can be difficult to recognize. Here, we analyzed the morphological, behavioral, and genetic differences between two sympatric cryptic species of the genus Hetaerina to determine the characters that contribute the most to reproductive isolation and the effect of the high rates of behavior interference between the species. We found complete genetic isolation and significant differences in the morphometry of caudal appendages and wing shape, as well as body size variation between species. In contrast, we did not find clear differences in the coloration of the wing spot and observed high rates of interspecific aggression. Our results suggest that divergence in the shape of the caudal appendages is the principal pre-mating barrier that prevents interspecific mating. Moreover, a scenario of character displacement on body size was found. Nevertheless, size could play an important role in both inter- and intrasexual interactions and, therefore, we cannot differentiate if it has resulted from reproductive or aggressive interference

Vega-Sanchez, Y. M., Oyama, K., Mendoza-Cuenca, L. F., Gaytan-Legaria, R., & Gonzalez-Rodriguez, A. (2024). Genomic differentiation and niche divergence in the Hetaerina americana (Odonata) cryptic species complex. Mol. Ecol. 33, e17207, doi:10.1111/mec.17207 [doi].
Abstract: The evolution of reproductive barriers, that is, the speciation process, implies the limitation of gene flow between populations. Different patterns of genomic differentiation throughout the speciation continuum may provide insights into the causal evolutionary forces of species divergence. In this study, we analysed a cryptic species complex of the genus Hetaerina (Odonata). This complex includes H. americana and H. calverti; however, in H. americana two highly differentiated genetic groups have been previously detected, which, we hypothesize, may correspond to different species with low morphological variation. We obtained single nucleotide polymorphism (SNP) data for 90 individuals belonging to the different taxa in the complex and carried out differentiation tests to identify genetic isolation. The results from STRUCTURE and discriminant analysis of principal components (DAPC), based on almost 5000 SNPs, confirmed the presence of three highly differentiated taxa. Also, we found F(ST) values above 0.5 in pairwise comparisons, which indicates a considerable degree of genetic isolation among the suggested species. We also found low climatic niche overlap among all taxa, suggesting that each group occurs at specific conditions of temperature, precipitation and elevation. We propose that H. americana comprises two cryptic species, which may be reproductively isolated by ecological barriers related to niche divergence, since the morphological variation is minimal and, therefore, mechanical barriers are probably less effective compared to other related species such as H. calverti

Verheyen, J., Stoks, R., 2019. Current and future daily temperature fluctuations make a pesticide more toxic: Contrasting effects on life history and physiology. Environ. Pollut. 248, 209-218.
Abstract: There is increasing concern that climate change may make organisms more sensitive to chemical pollution. Many pesticides are indeed more toxic at higher mean temperatures. Yet, we know next to nothing about the effect of another key component of climate change, the increase of daily temperature fluctuations (DTFs), on pesticide toxicity. Therefore, we tested the effect of the pesticide chlorpyrifos under different levels of DTF (constant=0 degrees C, low=5 degrees C (current maximum level) and high=10 degrees C (predicted maximum level under global warming)) around the same mean temperature on key life history and physiological traits of Ischnura elegans damselfly larvae in a common-garden experiment. At all levels of DTF, chlorpyrifos exposure was stressful: it reduced energy storage (fat content) and the activity of its target enzyme acetylcholinesterase, while it increased the activity of the detoxification enzyme cytochrome P450 monooxygenase. Notably, chlorpyrifos did not cause mortality or reduced growth rate at the constant temperature (0 degrees C DTF), yet increased mortality 6x and reduced growth rate with ca. 115% in the presence of DTF. This indicates that daily short-term exposures to higher temperatures can increase pesticide toxicity. Our data suggest that when 5 degrees C DTF will become more common in the studied high-latitude populations, this will increase the toxicity of CPF, and that a further increase from 5 degrees DTF to 10 degrees C DTF may not result in a further increase of pesticide toxicity. Our results highlight the biological importance of including daily temperature fluctuations in ecological risk assessment of pesticides and as an extra dimension in the climate-induced toxicant sensitivity concept

Verheyen, J., Stoks, R., 2019. Shrinking Body Size and Physiology Contribute to Geographic Variation and the Higher Toxicity of Pesticides in a Warming World. Environ. Sci. Technol. 53, 11515-11523.
Abstract: To improve current and future risk assessment of pesticides under global warming, mechanistic insights and consideration of daily temperature fluctuations (DTFs) are needed. One overlooked mechanism how both higher mean temperatures and DTFs may increase toxicity is by reducing body size (temperature-size-rule). We studied whether a higher mean temperature and DTF magnified chlorpyrifos toxicity in Ischnura elegans damselfly larvae, and whether this was mediated by temperature-induced reductions in body size and/or physiological changes. The lethal effects of chlorpyrifos were magnified at the high mean temperature (up to approximately 15%) and under DTF (up to approximately 33%), and especially at their combination (up to approximately 46%) indicating synergisms. This highlights that not only considering DTFs, but also their interaction with higher mean temperatures is pivotal for realistic predictions of pesticide toxicity. Both higher temperatures and DTFs resulted in smaller larvae, which were more sensitive to chlorpyrifos. Notably, the DTF-induced smaller body sizes, as well as the higher oxidative damage to lipids, contributed to the higher chlorpyrifos toxicity under DTF. By integrating the temperature-size rule and size-pesticide sensitivity pattern we provide proof-of-principle for a novel, likely general mechanism contributing to geographic variation and the higher toxicity of pesticides in a warming world.

Verheyen, J., Stoks, R., 2020. Negative bioenergetic responses to pesticides in damselfly larvae are more likely when it is hotter and when temperatures fluctuate. Chemosphere. 243, 125369.
Abstract: To make more realistic predictions about the current and future effects of pesticides, we need to better understand physiological mechanisms associated with the widespread higher toxicity of many pesticides under increasing mean temperatures and daily temperature fluctuations (DTFs). One overlooked, yet insightful, mechanism are bioenergetic responses as these provide information about the balance between energy gains and costs. Therefore, we studied how the bioenergetic responses to the insecticide chlorpyrifos were affected by a higher mean temperature and a higher DTF in Ischnura elegans damselfly larvae. To quantify bioenergetic responses we measured energy availability (Ea), energy consumption (Ec) and total net energy budget (cellular energy allocation, CEA). Exposure to chlorpyrifos considerably reduced CEA values when a high mean temperature was combined with a high DTF (up to -18%). Notably, chlorpyrifos had little effect on CEA at a constant 20 degrees C, meaning that the bioenergetic impact of chlorpyrifos would have been underestimated if we had only tested under standard testing conditions. The chlorpyrifos-induced reductions in CEA under warming were driven by reductions in Ea (up to -16%, mainly through large reductions in sugar and fat contents) while Ec was unaffected by chlorpyrifos. Treatment groups with a lower CEA value showed a higher mortality and a lower growth rate, indicating bioenergetic responses are contributing to the higher toxicity of chlorpyrifos under warming. Our study highlights the importance of evaluating the effects of pesticides under an increase in both mean temperature and DTF to improve the ecological risk assessment of pesticides under global warming

Verheyen, J. & Stoks, R. (2023). Thermal Performance Curves in a Polluted World: Too Cold and Too Hot Temperatures Synergistically Increase Pesticide Toxicity. Environ. Sci. Technol. 57, 3270-3279, doi:10.1021/acs.est.2c07567 [doi].
Abstract: Ecotoxicological studies typically cover only a limited part of the natural thermal range of populations and ignore daily temperature fluctuations (DTFs). Therefore, we may miss important stressor interaction patterns and have poor knowledge on how pollutants affect thermal performance curves (TPCs), which is needed to improve insights into the fate of populations to warming in a polluted world. We tested the single and combined effects of pesticide exposure and DTFs on the TPCs of low- and high-latitude populations of Ischnura elegans damselfly larvae. While chlorpyrifos did not have any effect at the intermediate mean temperatures (20-24 degrees C), it became toxic (reflecting synergisms) at lower (</=16 degrees C, reduced growth) and especially at higher (>/=28 degrees C, reduced survival and growth) mean temperatures, resulting in more concave-shaped TPCs. Remarkably, these toxicity patterns were largely consistent at both latitudes and hence across a natural thermal gradient. Moreover, DTFs magnified the pesticide-induced survival reductions at 34 degrees C. The TPC perspective allowed us to identify different toxicity patterns and interaction types (mainly additive vs synergistic) across the thermal gradient. This highlights the importance of using thermal gradients to make more realistic predictions about the impact of pesticides in a warming world and of warming in a polluted world

Verheyen, J., Cuypers, K., & Stoks, R. (2023). Adverse effects of the pesticide chlorpyrifos on the physiology of a damselfly only occur at the cold and hot extremes of a temperature gradient. Environ. Pollut. 326, 121438, doi:S0269-7491(23)00440-2 [pii];10.1016/j.envpol.2023.121438 [doi].
Abstract: Ecotoxicological studies considerably improved realism by assessing the toxicity of pollutants at different temperatures. Nevertheless, they may miss key interaction patterns between pollutants and temperature by typically considering only part of the natural thermal gradient experienced by species and ignoring daily temperature fluctuations (DTF). We therefore tested in a common garden laboratory experiment the effects of the pesticide chlorpyrifos across a range of mean temperatures and DTF on physiological traits (related to oxidative stress and bioenergetics) in low- and high-latitude populations of Ischnura elegans damselfly larvae. As expected, the impact of chlorpyrifos varied along the wide range of mean temperatures (12-34 degrees C). None of the physiological traits (except the superoxide anion levels) were affected by chlorpyrifos at the intermediate mean temperatures (20-24 degrees C). Instead, most of them were negatively affected by chlorpyrifos (reduced activity levels of the antioxidant defense enzymes superoxide dismutase [SOD], catalase [CAT] and peroxidase [PER], and a reduced energy budget) at the very high (>/=28 degrees C) or extreme high temperatures (>/=32 degrees C), and to lesser extent at the lower mean temperatures (</=16 degrees C). Notably, at the lower mean temperatures the negative impact of chlorpyrifos was often only present or stronger under DTF. Although the chlorpyrifos effects on the physiological traits greatly depended on the experimentally imposed thermal gradient, patterns were mainly consistent across the natural latitude-associated thermal gradient, indicating the generality of our results. The thermal patterns in chlorpyrifos-induced physiological responses contributed to the observed toxicity patterns in life history (reduced survival and growth at low and high mean temperatures). Taken together, our results underscore the importance of evaluating pesticide toxicity along a temperature gradient and of taking a mechanistic approach with a focus on physiology, to improve our understanding of the combined effects of pollutants and temperature in natural populations

Verzijden, M.N., Scobell, S.K., Svensson, E.I., 2014. The effects of experience on the development of sexual behaviour of males and females of the banded demoiselle (Calopteryx splendens). Behav. Processes 109 Pt B , 180-189.
Abstract: Mate preferences can vary in the direction of the preference, as well as the strength of the preference, and both direction and strength of preference are known to be plastic in many species. Preferences might have a learned component, and current and past social context may influence an individual's choosiness. In the damselfly species Calopteryx splendens, females increase the strength of their mate preferences with sexual experience. Here we show that sexually naive females selectively respond to conspecific courtship as soon as physical contact has been established, suggesting a role for tactile cues perceived through interspecific morphological differences in secondary reproductive traits. In addition our data also shows that males and females selectively respond to the intensity of the courtship of the potential, conspecific mate, while ignoring such information in heterospecific potential mates. These results underscore that mate choice is the result of dynamic interactions between the sexes, where both current and past information are integrated. This article is part of a Special Issue entitled: Cognition in the Wild

Vilenica, M., Rebrina, F., Ruzanovic, L., Gulin, V., Brigic, A., 2022. Odonata Assemblages as a Tool to Assess the Conservation Value of Intermittent Rivers in the Mediterranean. Insects. 13.
Abstract: Intermittent rivers, lotic habitats that cease to flow during the dry periods of the year, make up a large proportion of the world's inland waters and are an important source of water in arid regions such as the Mediterranean. Yet, water resources and riparian habitats in the Mediterranean regions are under diverse anthropogenic pressures, including land-use change. Odonata are widely used as a valuable tool for assessing freshwater ecosystems. Hence, with the aim of inspecting the conservation value of intermittent rivers in the Mediterranean based on the assemblages they support, we studied Odonata adults at four intermittent Mediterranean rivers in the Dinaric Western Balkans ecoregion with respect to the surrounding land-cover heterogeneity. We analyzed several diversity and conservation indices and recorded significant differences in Odonata species richness and Croatian Conservation Odonatological index among the studied rivers. Our findings showed that land use, as a long-term moderate anthropogenic impact, can enhance land-cover heterogeneity and in some cases even lead to increased Odonata diversity in intermittent rivers in the Mediterranean. Intermittent rivers provide habitat for several threatened Odonata species, suggesting the importance of Odonata in planning the conservation activities in these vulnerable ecosystems

Villalobos-Jimenez, G., Hassall, C., 2017. Effects of the urban heat island on the phenology of Odonata in London, UK. Int. J. Biometeorol. 61: 1337-1346.

Abstract: Urbanisation is one of the major drivers of ecosystem change and includes increased temperatures in cities leading to an urban heat island (UHI). This study quantified the phenological response of odonates across London, UK, from 1990 to 2012, using a database of 1,031,277 historical sightings. The ordinal flight dates of each species were used to calculate the leading edge, middle and trailing edge of the flight period (P5, P50 and P95, respectively). The results suggest that the phenology of odonates is affected by the UHI only at a community level: no significant changes in the P5 or P50 of the flight period were found, although the P95 shows a mean advance of 4.13 days compared to rural areas, thus suggesting a contraction of the flight period in urban areas. However, only one individual species (Sympetrum striolatum) exhibited an advance in the P95 of the flight period in urban areas compared to rural areas. On the other hand, climate change (minimum temperature) had a much stronger impact on the phenology of odonates at the community level with a significant advance of 6.9 days degrees C-1 in the P5 of the flight period, 3.1 days degrees C-1 in the P50 and 3.3 days degrees C-1 in the P95 flight date. Similarly, a significant advance in P5 was found in 7 of the 15 species tested in response to minimum temperature, and 2 species showed a significant advance in P50 in response to minimum temperature, but no species showed a shift in the P95 flight date due to minimum temperature. As shown in previous studies, life history influences the phenological response of odonates, with spring species and those species lacking an egg diapause being the most responsive to increased temperatures, although summer species and species with obligate egg diapause also respond to the UHI by advancing the P95 by 3.8 and 4.5 days, respectively, compared to rural areas, thus contracting the flight period. The present study shows that the UHI has negligible impacts on emergence patterns of odonates compared to climate change, which may result from the capacity of aquatic habitats to buffer the microclimatic conditions of the surrounding terrestrial habitats. We conclude by highlighting the importance of climate change on freshwater habitats over the impacts of the UHI

Waller JT, Svensson EI. 2017. Body size evolution in an old insect order: No evidence for Cope's Rule in spite of fitness benefits of large size. Evolution 71:2178-2193.
Abstract: We integrate field data and phylogenetic comparative analyses to investigate causes of body size evolution and stasis in an old insect order: odonates ("dragonflies and damselflies"). Fossil evidence for "Cope's Rule" in odonates is weak or nonexistent since the last major extinction event 65 million years ago, yet selection studies show consistent positive selection for increased body size among adults. In particular, we find that large males in natural populations of the banded demoiselle (Calopteryx splendens) over several generations have consistent fitness benefits both in terms of survival and mating success. Additionally, there was no evidence for stabilizing or conflicting selection between fitness components within the adult life-stage. This lack of stabilizing selection during the adult life-stage was independently supported by a literature survey on different male and female fitness components from several odonate species. We did detect several significant body size shifts among extant taxa using comparative methods and a large new molecular phylogeny for odonates. We suggest that the lack of Cope's rule in odonates results from conflicting selection between fitness advantages of large adult size and costs of long larval development. We also discuss competing explanations for body size stasis in this insect group

Waller, J.T., Willink, B., Tschol, M., Svensson, E.I., 2019. The odonate phenotypic database, a new open data resource for comparative studies of an old insect order. Sci. Data. 6, 316.
Abstract: We present The Odonate Phenotypic Database (OPD): an online data resource of dragonfly and damselfly phenotypes (Insecta: Odonata). Odonata is a relatively small insect order that currently consists of about 6400 species belonging to 32 families. The database consists of multiple morphological, life-history and behavioral traits, and biogeographical information collected from literature sources. We see taxon-specific phenotypic databases from Odonata and other organismal groups as becoming an increasing valuable resource in comparative studies. Our database has phenotypic records for 1011 of all 6400 known odonate species. The database is accessible at http://www.odonatephenotypicdatabase.org/, and a static version with an information file about the variables in the database is archived at Dryad

Ware,J., M.May, and K.Kjer. 2007. Phylogeny of the higher Libelluloidea (Anisoptera: Odonata): an exploration of the most speciose superfamily of dragonflies. Mol. Phylogenet. Evol. 45:289-310.
Abstract: Although libelluloid dragonflies are diverse, numerous, and commonly observed and studied, their phylogenetic history is uncertain. Over 150 years of taxonomic study of Libelluloidea Rambur, 1842, beginning with Hagen (1840), [Rambur, M.P., 1842. Neuropteres. Histoire naturelle des Insectes, Paris, pp. 534; Hagen, H., 1840. Synonymia Libellularum Europaearum. Dissertation inaugularis quam consensu et auctoritate gratiosi medicorum ordinis in academia albertina ad summos in medicina et chirurgia honores.] and Selys (1850), [de Selys Longchamps, E., 1850. Revue des Odonates ou Libellules d'Europe [avec la collaboration de H.A. Hagen]. Muquardt, Bruxelles; Leipzig, 1-408.], has failed to produce a consensus about family and subfamily relationships. The present study provides a well-substantiated phylogeny of the Libelluloidea generated from gene fragments of two independent genes, the 16S and 28S ribosomal RNA (rRNA), and using models that take into account non-independence of correlated rRNA sites. Ninety-three ingroup taxa and six outgroup taxa were amplified for the 28S fragment; 78 ingroup taxa and five outgroup taxa were amplified for the 16S fragment. Bayesian, likelihood and parsimony analyses of the combined data produce well-resolved phylogenetic hypotheses and several previously suggested monophyletic groups were supported by each analysis. Macromiinae, Corduliidae s. s., and Libellulidae are each monophyletic. The corduliid (s.l.) subfamilies Synthemistinae, Gomphomacromiinae, and Idionychinae form a monophyletic group, separate from the Corduliinae. Libellulidae comprises three previously accepted subfamilies (Urothemistinae, a very restricted Tetrathemistinae, and a modified Libellulinae) and five additional consistently recovered groups. None of the other previously proposed subfamilies are supported. Bayesian analyses run with an additional 71 sequences obtained from GenBank did not alter our conclusions. The evolution of adult and larval morphological characters is discussed here to suggest areas for future focus. This study shows the inherent problems in using poorly defined and sometimes inaccurately scored characters, basing groups on symplesiomorphies, and failure to recognize the widespread effects of character correlation and convergence, especially in aspects of wing venation

Watts, P.C., Rouquette, J.R., Saccheri, I.J., Kemp, S.J., Thompson, D.J., 2004. Molecular and ecological evidence for small-scale isolation by distance in an endangered damselfly, Coenagrion mercuriale. Mol. Ecol. 13, 2931-2945.
Abstract: Coenagrion mercuriale (Charpentier) (Odonata: Zygoptera) is one of Europe's most threatened damselflies and is listed in the European Habitats directive. We combined an intensive mark-release-recapture (MRR) study with a microsatellite-based genetic analysis for C. mercuriale from the Itchen Valley, UK, as part of an effort to understand the dispersal characteristics of this protected species. MRR data indicate that adult damselflies are highly sedentary, with only a low frequency of interpatch movement that is predominantly to neighbouring sites. This restricted dispersal leads to significant genetic differentiation throughout most of the Itchen Valley, except between areas of continuous habitat, and isolation by distance (IBD), even though the core populations are separated by less than 10 km. An urban area separating some sites had a strong effect on the spatial genetic structure. Average pairwise relatedness between individual damselflies is positive at short distances, reflecting fine-scale genetic clustering and IBD both within- and between-habitat patches. Damselflies from a fragmented habitat have higher average kinship than those from a large continuous population, probably because of poorer dispersal and localized breeding in the former. Although indirect estimates of gene flow must be interpreted with caution, it is encouraging that our results indicate that the spatial pattern of genetic variation matches closely with that expected from direct observations of movement. These data are further discussed with respect to possible barriers to dispersal within the study site and the ecology and conservation of C. mercuriale. To our knowledge, this is the first report of fine-scale genetic structuring in any zygopteran species

Wellenreuther, M., Sanchez-Guillen, R.A., 2016. Nonadaptive radiation in damselflies. Evol. Appl. 9, 103-118.
Abstract: Adaptive radiations have long served as living libraries to study the build-up of species richness; however, they do not provide good models for radiations that exhibit negligible adaptive disparity. Here, we review work on damselflies to argue that nonadaptive mechanisms were predominant in the radiation of this group and have driven species divergence through sexual selection arising from male-female mating interactions. Three damselfly genera (Calopteryx,Enallagma and Ischnura) are highlighted and the extent of (i) adaptive ecological divergence in niche use and (ii) nonadaptive differentiation in characters associated with reproduction (e.g. sexual morphology and behaviours) was evaluated. We demonstrate that species diversification in the genus Calopteryx is caused by nonadaptive divergence in coloration and behaviour affecting premating isolation, and structural differentiation in reproductive morphology affecting postmating isolation. Similarly, the vast majority of diversification events in the sister genera Enallagma and Ischnura are entirely driven by differentiation in genital structures used in species recognition. The finding that closely related species can show negligible ecological differences yet are completely reproductively isolated suggests that the evolution of reproductive isolation can be uncoupled from niche-based divergent natural selection, challenging traditional niche models of species coexistence

Wiederman, S.D., O'Carroll, D.C., 2013. Selective attention in an insect visual neuron. Curr. Biol. 23, 156-161.
Abstract: Animals need attention to focus on one target amid alternative distracters. Dragonflies, for example, capture flies in swarms comprising prey and conspecifics, a feat that requires neurons to select one moving target from competing alternatives. Diverse evidence, from functional imaging and physiology to psychophysics, highlights the importance of such "competitive selection" in attention for vertebrates. Analogous mechanisms have been proposed in artificial intelligence and even in invertebrates, yet direct neural correlates of attention are scarce from all animal groups. Here, we demonstrate responses from an identified dragonfly visual neuron that perfectly match a model for competitive selection within limits of neuronal variability (r(2) = 0.83). Responses to individual targets moving at different locations within the receptive field differ in both magnitude and time course. However, responses to two simultaneous targets exclusively track those for one target alone rather than any combination of the pair. Irrespective of target size, contrast, or separation, this neuron selects one target from the pair and perfectly preserves the response, regardless of whether the "winner" is the stronger stimulus if presented alone. This neuron is amenable to electrophysiological recordings, providing neuroscientists with a new model system for studying selective attention

Wikelski, M., Moskowitz, D., Adelman, J.S., Cochran, J., Wilcove, D.S., May, M.L., 2006. Simple rules guide dragonfly migration. Biol. Lett. 2, 325-329.
Abstract: Every year billions of butterflies, dragonflies, moths and other insects migrate across continents, and considerable progress has been made in understanding population-level migratory phenomena. However, little is known about destinations and strategies of individual insects. We attached miniaturized radio transmitters (ca 300 mg) to the thoraxes of 14 individual dragonflies (common green darners, Anax junius) and followed them during their autumn migration for up to 12 days, using receiver-equipped Cessna airplanes and ground teams. Green darners exhibited distinct stopover and migration days. On average, they migrated every 2.9+/-0.3 days, and their average net advance was 58+/-11 km in 6.1+/-0.9 days (11.9+/-2.8 km d-1) in a generally southward direction (186+/-52 degrees). They migrated exclusively during the daytime, when wind speeds were less than 25 km h-1, regardless of wind direction, but only after two nights of successively lower temperatures (decrease of 2.1+/-0.6 degrees C in minimum temperature). The migratory patterns and apparent decision rules of green darners are strikingly similar to those proposed for songbirds, and may represent a general migration strategy for long-distance migration of organisms with high self-propelled flight speeds

Willink, B., Ware, J., & Svensson, E. I. (2024). Tropical Origin, Global Diversification and Dispersal in the Pond Damselflies (Coenagrionoidea) Revealed by a New Molecular Phylogeny. Syst. Biol., doi:7585897 [pii];10.1093/sysbio/syae004 [doi].
Abstract: The processes responsible for the formation of Earth's most conspicuous diversity pattern, the latitudinal diversity gradient (LDG), remain unexplored for many clades in the Tree of Life. Here, we present a densely-sampled and dated molecular phylogeny for the most speciose clade of damselflies worldwide (Odonata: Coenagrionoidea), and investigate the role of time, macroevolutionary processes and biome-shift dynamics in shaping the LDG in this ancient insect superfamily. We used process-based biogeographic models to jointly infer ancestral ranges and speciation times, and to characterise within-biome dispersal and biome-shift dynamics across the cosmopolitan distribution of Coenagrionoidea. We also investigated temporal and biome-dependent variation in diversification rates. Our results uncover a tropical origin of pond damselflies and featherlegs ~ 105 Ma, while highlighting uncertainty of ancestral ranges within the tropics in deep time. Even though diversification rates have declined since the origin of this clade, global climate change and biome-shifts have slowly increased diversity in warm- and cold-temperate areas, where lineage turnover rates have been relatively higher. This study underscores the importance of biogeographic origin and time to diversify as important drivers of the LDG in pond damselflies and their relatives, while diversification dynamics have instead resulted in the formation of ephemeral species in temperate regions. Biome-shifts, although limited by tropical niche conservatism, have been the main factor reducing the steepness of the LDG in the last 30 Myr. With ongoing climate change and increasing northward range expansions of many damselfly taxa, the LDG may become less pronounced. Our results support recent calls to unify biogeographic and macroevolutionary approaches to increase our understanding of how latitudinal diversity gradients are formed and why they vary across time and among taxa

Willkommen, J., Michels, J., Gorb, S.N., 2015. Functional morphology of the male caudal appendages of the damselfly Ischnura elegans (Zygoptera: Coenagrionidae). Arthropod. Struct. Dev. 44, 289-300.
Abstract: Odonata are usually regarded as one of the most ancient extant lineages of winged insects. Their copulatory apparatus and mating behavior are unique among insects. Male damselflies use their caudal appendages to clasp the female's prothorax during both copulation and egg-laying and have a secondary copulatory apparatus for sperm transfer. Knowledge of the functional morphology of the male caudal appendages is the basis for understanding the evolution of these structures in Odonata and respective organs in other insects. However, it is still not exactly known how the zygopteran claspers work. In this study, we applied micro-computed tomography and a variety of microscopy techniques to examine the morphology, surface microstructure, cuticle material composition and muscle topography of the male caudal appendages of Ischnura elegans. The results indicate that the closing of the paraproctal claspers is mainly passive. This indirect closing mechanism is very likely supported by high proportions of the elastic protein resilin present in the cuticle of the paraproctal bases. In addition, the prothoracic morphology of the female plays an important role in the indirect closing of the male claspers. Our data indicate that both structures - the male claspers and the female prothoracic hump - function together like a snap-fastener

Woods, T. & McGarvey, D. J. (2023). Drivers of Odonata flight timing revealed by natural history collection data. J. Anim Ecol. 92, 310-323, doi:10.1111/1365-2656.13795 [doi].
Abstract: Global change may cause widespread phenological shifts. But knowledge of the extent and generality of these shifts is limited by the availability of phenological records with sufficiently large spatiotemporal extents. Using North American odonates (damselflies and dragonflies) as a model system, we show how a combination of natural history museum and community science collections, beginning in 1901 and extending through 2020, can be leveraged to better understand phenology. We begin with an analysis of odonate functional traits. Principal coordinate analysis is used to place odonate genera within a three-dimensional trait ordination. From this, we identify seven distinct functional groups and select a single odonate genus to represent each group. Next, we pair the odonate records with a list of environmental covariates, including air temperature and degree days, photoperiod, precipitation, latitude and elevation. An iterative subsampling process is then used to mitigate spatiotemporal sampling bias within the odonate dataset. Finally, we use path analysis to quantify the direct effects of degree days, photoperiod and precipitation on odonate emergence timing, while accounting for indirect effects of latitude, elevation and year. Path models showed that degree days, photoperiod and precipitation each have a significant influence on odonate emergence timing, but degree days have the largest overall effect. Notably, the effect that each covariate has on emergence timing varied among functional groups, with positive relationships observed for some group representatives and negative relationships observed for others. For instance, Calopteryx sp. emerged earlier as degree days increased, while Sympetrum sp. emerged later. Previous studies have linked odonate emergence timing to temperature, photoperiod or precipitation. By using natural history museum and community science data to simultaneously examine all three influences, we show that systems-level understanding of odonate phenology may now be possible

Worthen, W.B., Horacek, H.J., 2015. The distribution of dragonfly larvae in a South Carolina stream: relationships with sediment type, body size, and the presence of other larvae. J. Insect Sci. 15: 31.
Abstract: Dragonfly larvae were sampled in Little Creek, Greenville, SC. The distributions of five common species were described relative to sediment type, body size, and the presence of other larvae. In total, 337 quadrats (1 m by 0.5 m) were sampled by kick seine. For each quadrat, the substrate was classified as sand, sand-cobble mix, cobble, coarse, or rock, and water depth and distance from bank were measured. Larvae were identified to species, and the lengths of the body, head, and metafemur were measured. Species were distributed differently across sediment types: sanddragons, Progomphus obscurus (Rambur) (Odonata: Gomphidae), were common in sand; twin-spotted spiketails, Cordulegaster maculata Selys (Odonata: Cordulegastridae), preferred a sand-cobble mix; Maine snaketails, Ophiogomphus mainensis Packard (Odonata: Gomphidae), preferred cobble and coarse sediments; fawn darners, Boyeria vinosa (Say) (Odonata: Aeshnidae), preferred coarse sediments; and Eastern least clubtails, Stylogomphus albistylus (Hagen) (Odonata: Gomphidae), preferred coarse and rock sediments. P. obscurus and C. maculata co-occurred more frequently than expected by chance, as did O. mainensis, B. vinosa, and S. albistylus. Mean size varied among species, and species preferences contributed to differences in mean size across sediment types. There were significant negative associations among larval size classes: small larvae (<12 mm) occurred less frequently with large larvae (>15 mm) than expected by chance, and large larvae were alone in quadrats more frequently than other size classes. Species may select habitats at a large scale based on sediment type and their functional morphology, but small scale distributions are consistent with competitive displacement or intraguild predation.

Worthen, W.B., Fravel, R.K., Horne, C.P., 2021. Downstream Changes in Odonate (Insecta: Odonata) Communities along a Suburban to Urban Gradient: Untangling Natural and Anthropogenic Effects. Insects. 12.
Abstract: The community structure of lotic odonates (Insecta: Odonata) changes downstream, but it is difficult to untangle natural and anthropogenic causes. We surveyed larvae and adults at 15 sites along the Reedy River in Greenville Co., SC, USA, from sites in forested suburban landscapes through the urban core of the city of Greenville. We used principal component analyses and Akaike information criteria models to describe the relationships between larval and adult community descriptors (abundance, richness, and diversity) and habitat characteristics at several spatial scales, including water chemistry, sediment and detritus, aquatic and streamside vegetation, and the percent cover of landforms in the surrounding landscape. At all scales, larval abundance, richness, and diversity correlated with the amount of detritus. At a small scale, adult indices correlated with the amount of sunlight and streamside vegetation. Zygopteran community composition was nested at a large scale; richness and diversity did not correlate with changes in the landscape but increased downstream. Anisopteran composition was also nested, but richness correlated with the percent cover of field, wetland, and open water in the habitat and was unrelated to downstream site position. Landscape transformation affected anisopterans more than zygopterans by opening habitats that facilitate these generalist heliotherms

Wos, G., Palomar, G., Marszalek, M., Babik, W., & Sniegula, S. (2023). The effect of temperature and invasive alien predator on genetic and phenotypic variation in the damselfly Ischnura elegans: cross-latitude comparison. Front Zool. 20, 13, doi:10.1186/s12983-023-00494-z [pii];494 [pii];10.1186/s12983-023-00494-z [doi].
Abstract: BACKGROUND: Understanding and predicting how organisms respond to human-caused environmental changes has become a major concern in conservation biology. Here, we linked gene expression and phenotypic data to identify candidate genes underlying existing phenotypic trait differentiation under individual and combined environmental variables. For this purpose, we used the damselfly Ischnura elegans. Egg clutches from replicated high- (southern Sweden) and central-latitude (southern Poland) populations facing different degrees of seasonal time constraints were collected. Damselfly larvae were exposed to experimental treatments: current and mild warming temperatures crossed with the presence or absence of an invasive alien predator cue released by the spiny-cheek crayfish, Faxonius limosus, which is only present in Poland to date. We measured the following traits: larval development time, body size, mass and growth rate, and used the larvae for gene expression analysis by RNA-seq. Data were analysed using a multivariate approach. RESULTS: We showed latitudinal differences in coping with mild warming and predator cues. When exposed to an increased temperature and a predator cue, central-latitude individuals had the shortest development and the fastest growth compared to high-latitude individuals. There was a general effect of predator cues regarding mass and growth rate reduction independent of latitude. Transcriptome analysis revealed that metabolic pathways related to larval anatomy and development tended to be upregulated in response to mild warming but only in fast-growing central-latitude individuals. Metabolic pathways linked to oxidative stress tended to be downregulated in response to a predator cue, especially in central-latitude individuals. CONCLUSION: Different phenotypic and transcriptomic responses to environmental factors might be attributed to the variability in I. elegans life history strategies between the two latitudes caused by seasonal time constraints and to its coexistence with the invasive alien predator in nature. By providing insights into how organisms may respond to future anthropogenic changes, our results may be of particular interest in conservation biology

Yildirim, Y., Kristensson, D., Outomuro, D., Mikolajewski, D., Rodin, M. P., Sniegula, S., & Johansson, F. (2024). Phylogeography and phenotypic wing shape variation in a damselfly across populations in Europe. BMC. Ecol. Evol. 24, 19, doi:10.1186/s12862-024-02207-4 [pii];2207 [pii];10.1186/s12862-024-02207-4 [doi].
Abstract: BACKGROUND: Describing geographical variation in morphology of organisms in combination with data on genetic differentiation and biogeography can provide important information on how natural selection shapes such variation. Here we study genetic structure using ddRAD seq and wing shape variation using geometric morphometrics in 14 populations of the damselfly Lestes sponsa along its latitudinal range in Europe. RESULTS: The genetic analysis showed a significant, yet relatively weak population structure with high genetic heterozygosity and low inbreeding coefficients, indicating that neutral processes contributed very little to the observed wing shape differences. The genetic analysis also showed that some regions of the genome (about 10%) are putatively shaped by selection. The phylogenetic analysis showed that the Spanish and French populations were the ancestral ones with northern Swedish and Finnish populations being the most derived ones. We found that wing shape differed significantly among populations and showed a significant quadratic (but weak) relationship with latitude. This latitudinal relationship was largely attributed to allometric effects of wing size, but non-allometric variation also explained a portion of this relationship. However, wing shape showed no phylogenetic signal suggesting that lineage-specific variation did not contribute to the variation along the latitudinal gradient. In contrast, wing size, which is correlated with body size in L. sponsa, had a strong negative correlation with latitude. CONCLUSION: Our results suggest a relatively weak population structure among the sampled populations across Europe, but a clear differentiation between south and north populations. The observed geographic phenotypic variation in wing shape may have been affected by different local selection pressures or environmental effects

Yoshioka, A., Shimizu, A., Oguma, H., Kumada, N., Fukasawa, K., Jingu, S., Kadoya, T., 2020. Development of a camera trap for perching dragonflies: a new tool for freshwater environmental assessment. PeerJ. 8, e9681.
Abstract: Although dragonflies are excellent environmental indicators for monitoring terrestrial water ecosystems, automatic monitoring techniques using digital tools are limited. We designed a novel camera trapping system with an original dragonfly detector based on the hypothesis that perching dragonflies can be automatically detected using inexpensive and energy-saving photosensors built in a perch-like structure. A trial version of the camera trap was developed and evaluated in a case study targeting red dragonflies (Sympetrum spp.) in Japan. During an approximately 2-month period, the detector successfully detected Sympetrum dragonflies while using extremely low power consumption (less than 5 mW). Furthermore, a short-term field experiment using time-lapse cameras for validation at three locations indicated that the detection accuracy was sufficient for practical applications. The frequency of false positive detection ranged from 17 to 51 over an approximately 2-day period. The detection sensitivities were 0.67 and 1.0 at two locations, where a time-lapse camera confirmed that Sympetrum dragonflies perched on the trap more than once. However, the correspondence between the detection frequency by the camera trap and the abundance of Sympetrum dragonflies determined by field observations conducted in parallel was low when the dragonfly density was relatively high. Despite the potential for improvements in our camera trap and its application to the quantitative monitoring of dragonflies, the low cost and low power consumption of the detector make it a promising tool

Zeuss, D., Brandl, R., Brandle, M., Rahbek, C., Brunzel, S., 2014. Global warming favours light-coloured insects in Europe. Nat. Commun. 5, 3874.
Abstract: Associations between biological traits of animals and climate are well documented by physiological and local-scale studies. However, whether an ecophysiological phenomenon can affect large-scale biogeographical patterns of insects is largely unknown. Insects absorb energy from the sun to become mobile, and their colouration varies depending on the prevailing climate where they live. Here we show, using data of 473 European butterfly and dragonfly species, that dark-coloured insect species are favoured in cooler climates and light-coloured species in warmer climates. By comparing distribution maps of dragonflies from 1988 and 2006, we provide support for a mechanistic link between climate, functional traits and species that affects geographical distributions even at continental scales. Our results constitute a foundation for better forecasting the effect of climate change on many insect groups

Zhang, V.M., Martin, R.L., Murray, R.L., 2022. Chronic Road Salt Exposure Across Life Stages and The Interactive Effects of Warming and Salinity in a Semiaquatic Insect. Environ. Entomol. 51,  313-321.
Abstract: The salinization of freshwater habitats from winter road salt application is a growing concern. Understanding how taxa exposed to road salt run-off respond to this salinity exposure across life history transitions will be important for predicting the impacts of increasing salinity. We show that Leucorrhinia intacta Hagen, 1861 (Odonata: Libellulidae) dragonflies are robust to environmentally relevant levels of salt pollution across intrinsically stressful life history transitions (hatching, growth, and metamorphosis). Additionally, we observed no carry-over effects into adult dragonfly morphology. However, in a multiple-stressor setting, we see negative interactive effects of warming and salinity on activity, and we found that chronically warmed dragonfly larvae consumed fewer mosquitoes. Despite showing relatively high tolerance to salinity individually, we expect that decreased dragonfly performance in multiple-stressor environments could limit dragonflies' contribution to ecosystem services such as mosquito pest control in urban freshwater environments

 Zheng D, Nel A, Jarzembowski EA et al. 2017. Extreme adaptations for probable visual courtship behaviour in a Cretaceous dancing damselfly. Sci Rep 7:44932.

Abstract: Courtship behaviours, frequent among modern insects, have left extremely rare fossil traces. None are known previously for fossil odonatans. Fossil traces of such behaviours are better known among the vertebrates, e.g. the hypertelic antlers of the Pleistocene giant deer Megaloceros giganteus. Here we describe spectacular extremely expanded, pod-like tibiae in males of a platycnemidid damselfly from mid-Cretaceous Burmese amber. Such structures in modern damselflies, help to fend off other suitors as well as attract mating females, increasing the chances of successful mating. Modern Platycnemidinae and Chlorocyphidae convergently acquired similar but less developed structures. The new findings provide suggestive evidence of damselfly courtship behaviour as far back as the mid-Cretaceous. These data show an unexpected morphological disparity in dancing damselfly leg structure, and shed new light on mechanisms of sexual selection involving intra- and intersex reproductive competition during the Cretaceous